Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2422, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287087

RESUMEN

Quantum computers offer significant potential for complex system analysis, yet their application in large systems is hindered by limitations such as qubit availability and quantum hardware noise. While the variational quantum eigensolver (VQE) was proposed to address these issues, its scalability remains limited. Many efforts, including new ansätze and Hamiltonian modifications, have been made to overcome these challenges. In this work, we introduced the novel Fragment Molecular Orbital/Variational Quantum Eigensolver (FMO/VQE) algorithm. This method combines the fragment molecular orbital (FMO) approach with VQE and efficiently utilizes qubits for quantum chemistry simulations. Employing the UCCSD ansatz, the FMO/VQE achieved an absolute error of just 0.053 mHa with 8 qubits in a [Formula: see text] system using the STO-3G basis set, and an error of 1.376 mHa with 16 qubits in a [Formula: see text] system with the 6-31G basis set. These results indicated a significant advancement in scalability over conventional VQE, maintaining accuracy with fewer qubits. Therefore, our FMO/VQE method exemplifies how integrating fragment-based quantum chemistry with quantum algorithms can enhance scalability, facilitating more complex molecular simulations and aligning with quantum computing advancements.

2.
Sci Rep ; 11(1): 22842, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819554

RESUMEN

Recently, magnetic tunnel junctions (MTJs) with shape perpendicular magnetic anisotropy (S-PMA) have been studied extensively because they ensure high thermal stability at junctions smaller than 20 nm. Furthermore, spin-transfer torque (STT) and spin-orbit torque (SOT) hybrid switching, which guarantees fast magnetization switching and deterministic switching, has recently been achieved in experiments. In this study, the critical switching current density of the MTJ with S-PMA through the interplay of STT and SOT was investigated using theoretical and numerical methods. As the current density inducing SOT ([Formula: see text]) increases, the critical switching current density inducing STT ([Formula: see text]) decreases. Furthermore, for a given [Formula: see text], [Formula: see text] increases with increasing thickness, whereas [Formula: see text] decreases as the diameter increases. Moreover, [Formula: see text] in the plane of thickness and spin-orbit field-like torque ([Formula: see text]) was investigated for a fixed [Formula: see text] and diameter. Although [Formula: see text] decreases with increasing [Formula: see text], [Formula: see text] slowly increases with increasing thickness and increasing [Formula: see text]. The power consumption was investigated as a function of thickness and diameter at the critical switching current density. Experimental confirmation of these results using existing experimental techniques is anticipated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...