Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(30): 36781-36791, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37475159

RESUMEN

Phase change materials (PCMs) are considered useful tools for efficient thermal management and thermal energy utilization in various application fields. In this study, a colloidal PCM-in-liquid metal (LM) system is demonstrated as a novel platform composite with excellent latent heat storage capability, high thermal and electrical conductivities, and unique viscoelastic properties. In the proposed formulation, eutectic Ga-In is utilized as a high-thermal-conductivity and high-fluidity liquid matrix in which paraffinic PCM microparticles with various solid-liquid phase transition temperatures are suspended as fillers. Good compatibility between the fillers and matrix is achieved by the nanosized inorganic oxides (titania) adsorbed at the filler-matrix interface; thus, the composite is produced via simple vortex mixing without tedious pre- or post-processing. The composite shows unique trade-off effects among various properties, i.e., elastic modulus, yield stress, density, thermal conductivity, and melting or crystallization enthalpy, which can be easily controlled by varying the contents of the suspended fillers. A Joule heating device incorporating the composite exhibits improved electrothermal performance owing to the synergy between the high electrical conductivity and latent heat storage capability of the composite. The proposed platform may be exploited for the rational design and facile manufacture of high-performance form-factor-free latent heat storage systems for various potential applications such as battery thermal management and flexible heaters.

2.
ACS Omega ; 8(20): 17748-17757, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251162

RESUMEN

Colloidal suspensions of thermally conductive particles in a carrier fluid are considered promising heat transfer fluids for various thermal energy transfer applications, such as transportation, plants, electronics, and renewable energy systems. The thermal conductivity (k) of the particle-suspended fluids can be improved substantially by increasing the concentration of conductive particles above a "thermal percolation threshold," which is limited because of the vitrification of the resulting fluid at the high particle loadings. In this study, eutectic Ga-In liquid metal (LM) was employed as a soft high-k filler dispersed as microdroplets at high loadings in paraffin oil (as a carrier fluid) to produce an emulsion-type heat transfer fluid with the combined advantages of high thermal conductivity and high fluidity. Two types of the LM-in-oil emulsions, which were produced via the probe-sonication and rotor-stator homogenization (RSH) methods, demonstrated significant improvements in k, i.e., Δk ∼409 and ∼261%, respectively, at the maximum investigated LM loading of 50 vol % (∼89 wt %), attributed to the enhanced heat transport via high-k LM fillers above the percolation threshold. Despite the high filler loading, the RSH-produced emulsion retained remarkably high fluidity, with a relatively low viscosity increase and no yield stress, demonstrating its potential as a circulatable heat transfer fluid.

3.
Eur J Med Chem ; 239: 114501, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35716517

RESUMEN

Inhibition of translation initiation has emerging implications for the development of mechanism-based anticancer therapeutics. Phosphorylation of eIF2α is recognized as a key target that regulates the translation initiation cascade. Based on the bioisosteric replacement of urea-derived eIF2α phosphorylation activator 1, a novel series of N-aryl-N'-[4-(aryloxy)cyclohexyl]squaramide derivatives was designed and synthesized; their effects on the activation of eIF2α phosphorylation was assessed systematically. A brief structure-activity relationship analysis was established by stepwise structural optimization of the squaramide series. Subsequently, the antiproliferative activities of the selected analogues were determined in human leukemia K562 cells. We then identified 10 potent eIF2α phosphorylation activators with considerable anticancer activity. The most promising analogues 19 and 40 possessed higher cancer cell selectivity (SI = 6.16 and 4.83, respectively) than parent 1 (SI = 2.20). Finally, protein expression analysis revealed that compounds 19 and 40 induced eIF2α phosphorylation and its downstream effectors ATF4 and CHOP.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Quinina , Humanos , Fosforilación , Quinina/análogos & derivados , Relación Estructura-Actividad
4.
Foods ; 10(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803795

RESUMEN

White colony-forming yeast (WCFY), also referred to as film forming yeast or spoilage yeast, that appear on the surface of kimchi can deteriorate the sensory properties of kimchi, such as odor and texture. Thus, the aim of this study was to develop a method to inhibit the formation of the white colony in kimchi. First, alterations in kimchi manufacturing and storage conditions, including temperatures, pH, salinity, and anaerobic condition, were investigated to determine if they could inhibit the growth of WCFY (i.e., Kazachstania servazzii, Candida sake, Debaryomyces hansenii, Pichia kudriavzevii, and Hanseniaspora uvarum). Thereafter, the anti yeast activity of freeze-dried garlic powder (FGP) and cinnamon ethanol extract (CEE) was evaluated against WCFY using the agar-well diffusion assay. Following the direct application of FGP and CEE to the surface of the kimchi, the inhibitory effects on white colony were determined. The results showed that WCFY can grow under various manufacturing and storage conditions of kimchi. Regarding the growth inhibitory effect on WCFY, FGP exhibited anti yeast activity against four WCFYs. It did not show anti yeast activity against K. servazzii. However, CEE showed anti yeast activity against K. servazzii. In particular, the mixture of 10% FGP and 1.75% CEE, which was manufactured considering the influence of sensory properties in kimchi, exhibited anti yeast activity against all WCFY. Furthermore, the application of the FGP and CEE mixture supplemented with 0.02% xanthan gum to kimchi to enhance adhesion to the kimchi surface, led to a delay in the formation of a white colony on the surface of the kimchi by an average of 17 d at 10 °C compared to the control group. Collectively, the use of a FGP, CEE, and xanthan gum mixture could be an effective method for the inhibition of white colony formation on the surface of kimchi, extending its shelf life.

5.
Int J Oncol ; 47(5): 1923-31, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26397240

RESUMEN

Secretin receptor (SCTR), the G-protein coupled receptor (GPCR) for secretin, has been observed to be upregulated in a few tumor types while downregulated in others, promoting or suppressing the proliferation of tumor cells, respectively. However, little is known about the molecular regulatory mechanism of dysregulation in cancer. In the present study, an analysis of the biological pathways affected by methylation in breast cancer using the methylome databases revealed that GPCRs played a major part in the affected pathway. SCTR, one of the dysregulated GPCRs, showed hypermethylation (p<0.01) and downregulation (p<0.05) in breast cancer tissues. Pathway analysis after the downregulation of SCTR by siRNA in MCF-10A cells identified the G2/M stage checkpoint as the top-scored pathway. Cell cycle-related genes were all upregulated or downregulated suppressing cell proliferation. However, the overexpression of SCTR in MCF-7 cells led to a 35% increase of the cell proliferation index and 2.1-fold increase of cellular migration. Our findings indicate that SCTR suppresses the proliferation of normal breast cells, while the gene stimulates the proliferation and migration of cancer cells being downregulated by promoter methylation.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/biosíntesis , Proliferación Celular/genética , Receptores Acoplados a Proteínas G/genética , Receptores de la Hormona Gastrointestinal/genética , Apoptosis/genética , Neoplasias de la Mama/patología , Metilación de ADN/genética , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7
6.
PLoS One ; 9(5): e97818, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24842468

RESUMEN

Aberrant methylation of specific CpG sites at the promoter is widely responsible for genesis and development of various cancer types. Even though the microarray-based methylome analyzing techniques have contributed to the elucidation of the methylation change at the genome-wide level, the identification of key methylation markers or top regulatory networks appearing common in highly incident cancers through comparison analysis is still limited. In this study, we in silico performed the genome-wide methylation analysis on each 10 sets of normal and cancer pairs of five tissues: breast, colon, liver, lung, and stomach. The methylation array covers 27,578 CpG sites, corresponding to 14,495 genes, and significantly hypermethylated or hypomethylated genes in the cancer were collected (FDR adjusted p-value <0.05; methylation difference >0.3). Analysis of the dataset confirmed the methylation of previously known methylation markers and further identified novel methylation markers, such as GPX2, CLDN15, and KL. Cluster analysis using the methylome dataset resulted in a diagram with a bipartite mode distinguishing cancer cells from normal cells regardless of tissue types. The analysis further revealed that breast cancer was closest with lung cancer, whereas it was farthest from colon cancer. Pathway analysis identified that either the "cancer" related network or the "cancer" related bio-function appeared as the highest confidence in all the five cancers, whereas each cancer type represents its tissue-specific gene sets. Our results contribute toward understanding the essential abnormal epigenetic pathways involved in carcinogenesis. Further, the novel methylation markers could be applied to establish markers for cancer prognosis.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/genética , Neoplasias Gástricas/genética , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Análisis por Conglomerados , Neoplasias del Colon/metabolismo , Islas de CpG/genética , Metilación de ADN/fisiología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/metabolismo , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Gástricas/metabolismo
7.
BMC Cancer ; 13: 502, 2013 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-24160266

RESUMEN

BACKGROUND: MTO1 and MRPL41 are nuclear-encoded mitochondrial genes encoding a mitochondrial tRNA-modifying enzyme and a mitochondrial ribosomal protein, respectively. Although both genes have been known to have potential roles in cancer, little is known about their molecular regulatory mechanism, particularly from an epigenetic approach. In this study, we aimed to address their epigenetic regulation through the estrogen receptor (ER) in breast cancer. METHODS: Digital differential display (DDD) was conducted to identify mammary gland-specific gene candidates including MTO1 and MRPL41. Promoter CpG methylation and expression in breast cancer cell lines and tissues were examined by methylation-specific PCR and real time RT-PCR. Effect of estradiol (E2), tamoxifen, and trichostatin A (TSA) on gene expression was examined in ER + and ER- breast cancer cell lines. Chromatin immunoprecipitation and luciferase reporter assay were performed to identify binding and influencing of the ER to the promoters. RESULTS: Examination of both cancer tissues and cell lines revealed that the two genes showed an opposite expression pattern according to ER status; higher expression of MTO1 and MRPL41 in ER- and ER+ cancer types, respectively, and their expression levels were inversely correlated with promoter methylation. Tamoxifen, E2, and TSA upregulated MTO1 expression only in ER+ cells with no significant changes in ER- cells. However, these chemicals upregulated MRPL41 expression only in ER- cells without significant changes in ER+ cells, except for tamoxifen that induced downregulation. Chromatin immunoprecipitation and luciferase reporter assay identified binding and influencing of the ER to the promoters and the binding profiles were differentially regulated in ER+ and ER- cells. CONCLUSIONS: These results indicate that different epigenetic status including promoter methylation and different responses through the ER are involved in the differential expression of MTO1 and MRPL41 in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas Portadoras/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Proteínas Mitocondriales/genética , Receptores de Estrógenos/metabolismo , Proteínas Ribosómicas/genética , Línea Celular Tumoral , Metilación de ADN , Estradiol/farmacología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/farmacología , Regiones Promotoras Genéticas , Unión Proteica , Proteínas de Unión al ARN , Elementos de Respuesta , Tamoxifeno/farmacología
8.
Int J Oncol ; 43(5): 1659-65, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24026393

RESUMEN

Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of breast cancers, and an increasing number of marker genes have been identified. However, few genes which show methylation change in accordance with the progression of breast cancer have been identified. To identify genes which consistently undergo promoter methylation alterations as the tumor develops from a benign to a malignant form, genome-wide methylation databases of breast cancer cell lines from stage I to stage IV were analyzed. Heatmap and cluster analysis revealed that the genome-wide methylation changes showed a good accordance with tumor progression. Seven out of 14,495 genes were found to be consistently increased alongside the promoter methylation level through the normal cell line to the cancer stage IV cell lines. NEFL, one of the in silico hypermethylated genes in cancer, showed hypermethylation and lower expression in the cancer cell line MDA-MB-231, as well as in cancer tissues (methylation, p<0.05; expression, p<0.01). The expression was restored by inducing demethylation of the promoter in MDA-MB-231 cells. Our findings may lend credence to the possibility of using tumor stage-specific alterations in methylation patterns as biomarkers for estimating prognosis and assessing treatment options for breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Mama/patología , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Proteínas de Neurofilamentos/genética , Regiones Promotoras Genéticas/genética , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Células Cultivadas , Femenino , Silenciador del Gen , Humanos , Estadificación de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
PLoS One ; 8(1): e55338, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23383159

RESUMEN

Human lactoferrin (LF) is a multifunctional protein involved in immunomodulation, cellular growth, and differentiation. In addition to its secreted form (sLF), an alternative form (ΔLF) lacking the signal sequence has been found to be downregulated in cancer. Although the signaling pathways mediated by LF have been studied in a few cell models, there have been no relevant systemic approaches. Therefore, this study was carried out to identify and compare signaling networks provoked by the two LF isoforms. For this, the two forms were overexpressed in HEK293 cells using the Flp-In T-Rex system, after which genome-wide expression analysis of 18,367 genes was conducted. Pathway analysis of the genes showing altered expression identified pathways which are responsible for cell survival and apoptosis. In addition, the pathways mediated by the two LF forms were within distantly related networks. GPCR, PI3K complex, and POU5F1, which are involved in receptor-mediated pathways, were centered in the sLF network, whereas RIF1, NOS3, and RNPS1, which are involved in intracellular signaling, were centered in the ΔLF network. These results suggest that structural differences between the LF isoforms, mainly glycosylation, determine the fate of LF signaling. Furthermore, these findings provide information relating to the role of ΔLF which is downregulated during carcinogenesis.


Asunto(s)
Lactoferrina/metabolismo , Transducción de Señal/genética , Apoptosis/genética , Supervivencia Celular/genética , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Isoformas de Proteínas/metabolismo , Ribonucleoproteínas/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión a Telómeros/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Mol Cells ; 34(5): 433-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23076708

RESUMEN

Mbu-1 (Csrnp-3) is a mouse gene that was identified in our previous study as showing highly restricted expression to the central nervous system. In this study, to elucidate the regulatory mechanism for tissue specificity of the gene, epigenetic approaches that identify the profiles of CpG methylation, as well as histone modifications at the promoter region were conducted. Methylation-specific PCR revealed that the CpG sites in brain tissues from embryo to adult stages showed virtually no methylation (0.052-0.67%). Lung (9.0%) and pancreas (3.0%) also showed lower levels. Other tissues such as liver, kidney, and heart showed much higher methylation levels ranging from approximately 39-93%. Treatment of 5-aza-2'-deoxycytidine (5-Aza-dC) significantly decreased promoter methylation, reactivating Mbu-1 expression in NG108-15 and Neuro-2a neuronal cells. Chromatin immunoprecipitation assay revealed that 5-Aza-dC decreased levels of acetylated H3K9 and methylated H3K4, and increased methylated H3K9. This result indicates that CpG methylation converses with histone modifications in an opposing sense of regulating Mbu-1 expression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Encéfalo/metabolismo , Histonas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Azacitidina/análogos & derivados , Azacitidina/farmacología , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Islas de CpG , Metilación de ADN , Proteínas de Unión al ADN , Decitabina , Epigénesis Genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo
11.
Mol Cells ; 33(2): 127-33, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22228181

RESUMEN

Epigenetic methylation change is a major process that occurs during cancer development. Even though many tumor-related genes have been identified based on their relationship between methylation and expression, few studies have been conducted to investigate the relevant biological pathways involved in these changes. To identify essential pathways likely to be affected by methylation in breast cancer, we examined a pool of genes in which expression was upregulated after induction of demethylation by 5-Aza-2'-deoxycytidine (Aza) in the MCF-7 breast cancer cell line. Genome-wide demethylation was confirmed by monitoring the demethylation of a previously known gene, SULT1A1. Overall, 210 and 213 genes were found to be upregulated and downregulated (fold change ≥ 2), respectively, in common in cells treated with 5 and 10 µM of Aza. Network analysis of these 423 genes with altered expression patterns identified the involvement of a cancer related network of genes that were heavily regulated by TNF-α in breast tumorigenesis. Our results suggest that epigenetic dysregulation of cellular processes relevant to TNF-α-dependent apoptosis may be intimately involved in tumorigenesis in MCF-7 cells.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Factor de Necrosis Tumoral alfa/metabolismo , Compuestos Aza/farmacología , Carcinógenos/farmacología , Línea Celular Tumoral , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Biología Computacional , Metilación de ADN , Femenino , Perfilación de la Expresión Génica , Humanos , Análisis por Micromatrices , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA