Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38927706

RESUMEN

Deficiencies in DNA mismatch repair (MMRd) leave characteristic footprints of microsatellite instability (MSI) in cancer genomes. We used data from the Cancer Genome Atlas and International Cancer Genome Consortium to conduct a comprehensive analysis of MSI-associated cancers, focusing on indel mutational signatures. We classified MSI-high genomes into two subtypes based on their indel profiles: deletion-dominant (MMRd-del) and insertion-dominant (MMRd-ins). Compared with MMRd-del genomes, MMRd-ins genomes exhibit distinct mutational and transcriptomic features, including a higher prevalence of T>C substitutions and related mutation signatures. Short insertions and deletions in MMRd-ins and MMRd-del genomes target different sets of genes, resulting in distinct indel profiles between the two subtypes. In addition, indels in the MMRd-ins genomes are enriched with subclonal alterations that provide clues about a distinct evolutionary relationship between the MMRd-ins and MMRd-del genomes. Notably, the transcriptome analysis indicated that MMRd-ins cancers upregulate immune-related genes, show a high level of immune cell infiltration, and display an elevated neoantigen burden. The genomic and transcriptomic distinctions between the two types of MMRd genomes highlight the heterogeneity of genetic mechanisms and resulting genomic footprints and transcriptomic changes in cancers, which has potential clinical implications.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Mutación INDEL , Inestabilidad de Microsatélites , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/inmunología , Reparación de la Incompatibilidad de ADN/genética , Genoma Humano , Transcriptoma/genética
2.
Front Cell Dev Biol ; 12: 1345660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523628

RESUMEN

Background: Previous studies have reported that genes highly expressed in leukemic stem cells (LSC) may dictate the survival probability of patients and expression-based cellular deconvolution may be informative in forecasting prognosis. However, whether the prognosis of acute myeloid leukemia (AML) can be predicted using gene expression and deconvoluted cellular abundances is debatable. Methods: Nine different cell-type abundances of a training set composed of the AML samples of 422 patients, were used to build a model for predicting prognosis by least absolute shrinkage and selection operator Cox regression. This model was validated in two different validation sets, TCGA-LAML and Beat AML (n = 179 and 451, respectively). Results: We introduce a new prognosis predicting model for AML called the LSC activity (LSCA) score, which incorporates the abundance of 5 cell types, granulocyte-monocyte progenitors, common myeloid progenitors, CD45RA + cells, megakaryocyte-erythrocyte progenitors, and multipotent progenitors. Overall survival probabilities between the high and low LSCA score groups were significantly different in TCGA-LAML and Beat AML cohorts (log-rank p-value = 3.3×10-4 and 4.3×10-3, respectively). Also, multivariate Cox regression analysis on these two validation sets shows that LSCA score is independent prognostic factor when considering age, sex, and cytogenetic risk (hazard ratio, HR = 2.17; 95% CI 1.40-3.34; p < 0.001 and HR = 1.20; 95% CI 1.02-1.43; p < 0.03, respectively). The performance of the LSCA score was comparable to other prognostic models, LSC17, APS, and CTC scores, as indicated by the area under the curve. Gene set variation analysis with six LSC-related functional gene sets indicated that high and low LSCA scores are associated with upregulated and downregulated genes in LSCs. Conclusion: We have developed a new prognosis prediction scoring system for AML patients, the LSCA score, which uses deconvoluted cell-type abundance only.

3.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35270042

RESUMEN

Neonatal hypoxic-ischemic encephalopathy (HIE) results in neurological impairments; cell-based therapy has been suggested as a therapeutic avenue. Previous research has demonstrated the synergistically potentiated therapeutic efficacy of human umbilical cord blood (UCB) by combining recombinant human erythropoietin (EPO) treatment for recovery from HIE. However, its molecular mechanism is not entirely understood. In the present study, we analyzed the mechanisms underlying the effect of combination treatment with EPO and UCB by transcriptomic analysis, followed by gene enrichment analysis. Mouse HIE model of the neonate was prepared and randomly divided into five groups: sham, HIE, and UCB, EPO, and UCB+EPO treatments after HIE. A total of 376 genes were differentially expressed when |log2FC| ≥ 1-fold change expression values were considered to be differentially expressed between UCB+EPO and HIE. Further assessment through qRT-PCR and gene enrichment analysis confirmed the expression and correlation of its potential target, Nurr1, as an essential gene involved in the synergistic effect of the UCB+EPO combination. The results indicated the remarkable activation of Wnt/ß-catenin signaling by reducing the infarct size by UCB+EPO treatment, accompanied by Nurr1 activity. In conclusion, these findings suggest that the regulation of Nurr1 through the Wnt/ß-catenin pathway exerts a synergistic neuroprotective effect in UCB and EPO combination treatment.


Asunto(s)
Eritropoyetina , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Animales , Modelos Animales de Enfermedad , Epoetina alfa/uso terapéutico , Eritropoyetina/genética , Eritropoyetina/farmacología , Eritropoyetina/uso terapéutico , Sangre Fetal , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptores Citoplasmáticos y Nucleares , Proteínas Recombinantes/uso terapéutico , beta Catenina
4.
Curr Oncol ; 28(3): 2281-2295, 2021 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205437

RESUMEN

Glioma accounts for 80% of all malignant brain tumours and is the most common adult primary brain tumour. Age is an important factor affecting the development of cancer, as somatic mutations accumulate with age. Here, we aimed to analyse the significance of age-dependent non-silent somatic mutations in glioma prognosis. Histological tumour grade depends on age at diagnosis in patients with IDH1, TP53, ATRX, and EGFR mutations. Age of patients with wild-type IDH1 and EGFR increased with increase in tumour grade, while the age of patients with IDH1 or EGFR mutation remained constant. However, the age of patients with EGFR mutation was higher than that of patients with IDH1 mutation. The hierarchical clustering of patients was dominantly separated by IDH1 and EGFR mutations. Furthermore, patients with IDH1 mutation were dominantly separated by TP53 and ATRX double mutation and its double wild-type counterpart. The age of patients with ATRX and TP53 mutation was lower than that of patients with wild-type ATRX and TP53. Patients with the double mutation showed poorer prognosis than those with the double wild type genotype. Unlike IDH1 mutant, IDH1 wild-type showed upregulation of expression of epithelial mesenchymal transition associated genes.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Neoplasias Encefálicas/genética , Glioma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Transcriptoma
5.
PLoS One ; 16(3): e0247293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33690665

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive malignancy classified by the World Health Organization as a grade IV glioma. Despite the availability of aggressive standard therapies, most patients experience recurrence, for which there are currently no effective treatments. We aimed to conduct a phase I/IIa clinical trial to investigate the safety and efficacy of adoptive, ex-vivo-expanded, and activated natural killer cells and T lymphocytes from peripheral blood mononuclear cells of patients with recurrent GBM. This study was a single-arm, open-label, investigator-initiated trial on 14 patients recruited between 2013 and 2017. The immune cells were administered via intravenous injection 24 times at 2-week intervals after surgical resection or biopsy. The safety and clinical efficacy of this therapy was examined by assessing adverse events and comparing 2-year overall survival (OS). Transcriptomic analysis of tumor tissues was performed using NanoString to identify the mechanism of therapeutic efficacy. No grade 4 or 5 severe adverse events were observed. The most common treatment-related adverse events were grade 1 or 2 in severity. The most severe adverse event was grade 3 fever. Median OS was 22.5 months, and the median progression-free survival was 10 months. Five patients were alive for over 2 years and showed durable response with enhanced immune reaction transcriptomic signatures without clinical decline until the last follow-up after completion of the therapy. In conclusion, autologous adoptive immune-cell therapy was safe and showed durable response in patients with enhanced immune reaction signatures. This therapy may be effective for recurrent GBM patients with high immune response in their tumor microenvironments. Trial registration: The Korea Clinical Research Information Service database: KCT0003815, Registered 18 April 2019, retrospectively registered.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Inmunoterapia Adoptiva/métodos , Recurrencia Local de Neoplasia/terapia , Adulto , Anciano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Femenino , Perfilación de la Expresión Génica , Glioblastoma/genética , Glioblastoma/inmunología , Humanos , Inmunoterapia Adoptiva/efectos adversos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Estudios Prospectivos , Análisis de Supervivencia , Trasplante Autólogo/efectos adversos , Resultado del Tratamiento
7.
Cancers (Basel) ; 12(9)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906679

RESUMEN

Oligodendroglioma (OD) is a subtype of glioma occurring in the central nervous system. The 1p/19q codeletion is a prognostic marker of OD with an isocitrate dehydrogenase (IDH) mutation and is associated with a clinically favorable overall survival (OS); however, the exact underlying mechanism remains unclear. Long non-coding RNAs (lncRNAs) have recently been suggested to regulate carcinogenesis and prognosis in cancer patients. Here, we performed in silico analyses using low-grade gliomas from datasets obtained from The Cancer Genome Atlas to investigate the effects of ceRNA with 1p/19q codeletion on ODs. Thus, we selected modules of differentially expressed genes that were closely related to 1p/19q codeletion traits using weighted gene co-expression network analysis and constructed 16 coding RNA-miRNA-lncRNA networks. The ceRNA network participated in ion channel activity, insulin secretion, and collagen network and extracellular matrix (ECM) changes. In conclusion, ceRNAs with a 1p/19q codeletion can create different tumor microenvironments via potassium ion channels and ECM composition changes; furthermore, differences in OS may occur. Moreover, if extrapolated to gliomas, our results can provide insights into the consequences of identical gene expression, indicating the possibility of tracking different biological processes in different subtypes of glioma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...