Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 95
1.
Parkinsonism Relat Disord ; 115: 105821, 2023 Oct.
Article En | MEDLINE | ID: mdl-37643509

INTRODUCTION: Impaired autophagy is a pathogenic mechanism in the synucleinopathies. Sirolimus, a potent mTOR inhibitor and autophagy activator, had no beneficial effects in a randomized placebo-controlled trial in patients with multiple system atrophy (MSA). Whether sirolimus effectively inhibited brain mTOR activity was unknown. We aimed to evaluate if patients with MSA treated with sirolimus had evidence of inhibited brain mTOR pathways by measuring neuron-derived serum extracellular vesicles (NEVs). METHODS: Serum samples were collected from participants of the sirolimus-MSA trial, which randomized patients to sirolimus (2-6 mg/day) or placebo for 48 weeks. NEVs were immunoprecipitated with three antibodies-against neurons. Brain mTOR engagement was quantified as the change in the NEV phosphorylated mTOR (p-mTOR) to total-mTOR (tot-mTOR) ratio after 48 weeks of sirolimus. RESULTS: Samples from 27 patients [mean (±SD) age, 59.2±7 years, 15 (55.5%) men] were analyzed (19 sirolimus, 8 placebo). Treated- and placebo-patients had similar p-mTOR:tot-mTOR ratio at 24 (placebo: 0.248 ± 0.03, sirolimus: 0.289 ± 0.02; P = 0.305) and 48 weeks (placebo: 0.299 ± 0.05, sirolimus: 0.261 ± 0.03; P = 0.544). The tot-mTOR, p-mTOR, or their ratio levels were not associated with Unified MSA Rating Scale (UMSARS) worsening. DISCUSSION: These results are consistent with no brain mTOR engagement by oral sirolimus up to 6 mg/day. NEV-based biomarkers are a rational approach to investigating target engagement in clinical trials of brain-targeted therapeutics.

2.
Mov Disord ; 38(10): 1850-1860, 2023 10.
Article En | MEDLINE | ID: mdl-37461292

BACKGROUND: Long-term use of levodopa for Parkinson's disease (PD) treatment is often hindered by development of motor complications, including levodopa-induced dyskinesia (LID). The substantia nigra pars reticulata (SNr) and globus pallidus internal segment (GPi) are the output nuclei of the basal ganglia. Dysregulation of SNr and GPi activity contributes to PD pathophysiology and LID. OBJECTIVE: The objective of this study was to determine whether direct modulation of SNr GABAergic neurons and SNr projections to the pedunculopontine nucleus (PPN) regulates PD symptoms and LID in a mouse model. METHODS: We expressed Cre-recombinase activated channelrhodopsin-2 (ChR2) or halorhodopsin adeno-associated virus-2 (AAV2) vectors selectively in SNr GABAergic neurons of Vgat-IRES-Cre mice in a 6-hydroxydopamine model of PD to investigate whether direct optogenetic modulation of SNr neurons or their projections to the PPN regulates PD symptoms and LID expression. The forepaw stepping task, mouse LID rating scale, and open-field locomotion were used to assess akinesia and LID to test the effect of SNr modulation. RESULTS: Akinesia was improved by suppressing SNr neuron activity with halorhodopsin. LID was significantly reduced by increasing SNr neuronal activity with ChR2, which did not interfere with the antiakinetic effect of levodopa. Optical stimulation of ChR2 in SNr projections to the PPN recapitulated direct SNr stimulation. CONCLUSIONS: Modulation of SNr GABAergic neurons alters akinesia and LID expression in a manner consistent with the rate model of basal ganglia circuitry. Moreover, the projections from SNr to PPN likely mediate the antidyskinetic effect of increasing SNr neuronal activity, identifying a potential novel role for the PPN in LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Dyskinesia, Drug-Induced , Parkinson Disease , Pars Reticulata , Mice , Animals , Levodopa/adverse effects , Halorhodopsins , GABAergic Neurons , Substantia Nigra
3.
bioRxiv ; 2023 Apr 06.
Article En | MEDLINE | ID: mdl-37066303

Astrocytes are a highly abundant glial cell type that perform critical homeostatic functions in the central nervous system. Like neurons, astrocytes have many discrete heterogenous subtypes. The subtype identity and functions are, at least in part, associated with their anatomical location and can be highly restricted to strategically important anatomical domains. Here, we report that astrocytes forming the glia limitans superficialis, the outermost border of brain and spinal cord, are a highly specialized astrocyte subtype and can be identified by a single marker: Myocilin (Myoc). We show that Myoc+ astrocytes cover the entire brain and spinal cord surface, exhibit an atypical morphology, and are evolutionarily conserved from rodents to humans. Identification of this highly specialized astrocyte subtype will advance our understanding of CNS homeostasis and potentially be targeted for therapeutic intervention to combat peripheral inflammatory effects on the CNS.

5.
Proc Natl Acad Sci U S A ; 120(12): e2213093120, 2023 03 21.
Article En | MEDLINE | ID: mdl-36920928

Dopamine (DA) loss in Parkinson's disease (PD) causes debilitating motor deficits. However, dopamine is also widely linked to reward prediction and learning, and the contribution of dopamine-dependent learning to movements that are impaired in PD-which often do not lead to explicit rewards-is unclear. Here, we used two distinct motor tasks to dissociate dopamine's acute motoric effects vs. its long-lasting, learning-mediated effects. In dopamine-depleted mice, motor task performance gradually worsened with task exposure. Task experience was critical, as mice that remained in the home cage during the same period were relatively unimpaired when subsequently probed on the task. Repeated dopamine replacement treatments acutely rescued deficits and gradually induced long-term rescue that persisted despite treatment withdrawal. Surprisingly, both long-term rescue and parkinsonian performance decline were task specific, implicating dopamine-dependent learning. D1R activation potently induced acute rescue that gradually consolidated into long-term rescue. Conversely, reduced D2R activation potently induced parkinsonian decline. In dopamine-depleted mice, either D1R activation or D2R activation prevented parkinsonian decline, and both restored balanced activation of direct vs. indirect striatal pathways. These findings suggest that reinforcement and maintenance of movements-even movements not leading to explicit rewards-are fundamental functions of dopamine and provide potential mechanisms for the hitherto unexplained "long-duration response" by dopaminergic therapies in PD.


Dopamine , Parkinson Disease , Mice , Animals , Dopamine/metabolism , Neurons/metabolism , Corpus Striatum/metabolism , Learning/physiology , Parkinson Disease/metabolism
7.
Trials ; 23(1): 855, 2022 Oct 06.
Article En | MEDLINE | ID: mdl-36203214

BACKGROUND: To date, no medication has slowed the progression of Parkinson's disease (PD). Preclinical, epidemiological, and experimental data on humans all support many benefits of endurance exercise among persons with PD. The key question is whether there is a definitive additional benefit of exercising at high intensity, in terms of slowing disease progression, beyond the well-documented benefit of endurance training on a treadmill for fitness, gait, and functional mobility. This study will determine the efficacy of high-intensity endurance exercise as first-line therapy for persons diagnosed with PD within 3 years, and untreated with symptomatic therapy at baseline. METHODS: This is a multicenter, randomized, evaluator-blinded study of endurance exercise training. The exercise intervention will be delivered by treadmill at 2 doses over 18 months: moderate intensity (4 days/week for 30 min per session at 60-65% maximum heart rate) and high intensity (4 days/week for 30 min per session at 80-85% maximum heart rate). We will randomize 370 participants and follow them at multiple time points for 24 months. The primary outcome is the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor score (Part III) with the primary analysis assessing the change in MDS-UPDRS motor score (Part III) over 12 months, or until initiation of symptomatic antiparkinsonian treatment if before 12 months. Secondary outcomes are striatal dopamine transporter binding, 6-min walk distance, number of daily steps, cognitive function, physical fitness, quality of life, time to initiate dopaminergic medication, circulating levels of C-reactive protein (CRP), and brain-derived neurotrophic factor (BDNF). Tertiary outcomes are walking stride length and turning velocity. DISCUSSION: SPARX3 is a Phase 3 clinical trial designed to determine the efficacy of high-intensity, endurance treadmill exercise to slow the progression of PD as measured by the MDS-UPDRS motor score. Establishing whether high-intensity endurance treadmill exercise can slow the progression of PD would mark a significant breakthrough in treating PD. It would have a meaningful impact on the quality of life of people with PD, their caregivers and public health. TRIAL REGISTRATION: ClinicalTrials.gov NCT04284436 . Registered on February 25, 2020.


Parkinson Disease , Antiparkinson Agents/therapeutic use , Brain-Derived Neurotrophic Factor , C-Reactive Protein , Clinical Trials, Phase III as Topic , Dopamine Plasma Membrane Transport Proteins/therapeutic use , Exercise , Exercise Therapy/methods , Humans , Multicenter Studies as Topic , Parkinson Disease/diagnosis , Parkinson Disease/drug therapy , Quality of Life , Randomized Controlled Trials as Topic , Treatment Outcome
9.
NPJ Parkinsons Dis ; 8(1): 110, 2022 Aug 30.
Article En | MEDLINE | ID: mdl-36042235

Non-motor symptoms of Parkinson's disease (PD) such as dysautonomia and REM sleep behavior disorder (RBD) are recognized to be important prodromal symptoms that may also indicate clinical subtypes of PD with different pathogenesis. Unbiased clustering analyses showed that subjects with dysautonomia and RBD symptoms, as well as early cognitive dysfunction, have faster progression of the disease. Through analysis of the Parkinson's Progression Markers Initiative (PPMI) de novo PD cohort, we tested the hypothesis that symptoms of dysautonomia and RBD, which are readily assessed by standard questionnaires in an ambulatory care setting, may help to independently prognosticate disease progression. Although these two symptoms associate closely, dysautonomia symptoms predict severe progression of motor and non-motor symptoms better than RBD symptoms across the 3-year follow-up period. Autonomic system involvement has not received as much attention and may be important to consider for stratification of subjects for clinical trials and for counseling patients.

12.
Mov Disord ; 37(2): 253-263, 2022 02.
Article En | MEDLINE | ID: mdl-34939221

Gait and balance abnormalities develop commonly in Parkinson's disease and are among the motor symptoms most disabling and refractory to dopaminergic or other treatments, including deep brain stimulation. Efforts to develop effective therapies are challenged by limited understanding of these complex disorders. There is a major need for novel and appropriately targeted research to expedite progress in this area. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society has charged a panel of experts in the field to consider the current knowledge gaps and determine the research routes with highest potential to generate groundbreaking data. © 2021 International Parkinson and Movement Disorder Society.


Gait Disorders, Neurologic , Parkinson Disease , Dopamine , Gait/physiology , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans , Parkinson Disease/complications , Parkinson Disease/therapy , Research
14.
Acta Neuropathol Commun ; 9(1): 179, 2021 11 06.
Article En | MEDLINE | ID: mdl-34742348

Alpha-synuclein seed amplification assays (αSyn-SAAs) are promising diagnostic tools for Parkinson's disease (PD) and related synucleinopathies. They enable detection of seeding-competent alpha-synuclein aggregates in living patients and have shown high diagnostic accuracy in several PD and other synucleinopathy patient cohorts. However, there has been confusion about αSyn-SAAs for their methodology, nomenclature, and relative accuracies when performed by various laboratories. We compared αSyn-SAA results obtained from three independent laboratories to evaluate reproducibility across methodological variations. We utilized the Parkinson's Progression Markers Initiative (PPMI) cohort, with DATSCAN data available for comparison, since clinical diagnosis of early de novo PD is critical for neuroprotective trials, which often use dopamine transporter imaging to enrich their cohorts. Blinded cerebrospinal fluid (CSF) samples for a randomly selected subset of PPMI subjects (30 PD, 30 HC, and 20 SWEDD), from both baseline and year 3 collections for the PD and HC groups (140 total CSF samples) were analyzed in parallel by each lab according to their own established and optimized αSyn-SAA protocols. The αSyn-SAA results were remarkably similar across laboratories, displaying high diagnostic performance (sensitivity ranging from 86 to 96% and specificity from 93 to 100%). The assays were also concordant for samples with results that differed from clinical diagnosis, including 2 PD patients determined to be clinically inconsistent with PD at later time points. All three assays also detected 2 SWEDD subjects as αSyn-SAA positive who later developed PD with abnormal DAT-SPECT. These multi-laboratory results confirm the reproducibility and value of αSyn-SAA as diagnostic tools, illustrate reproducibility of the assay in expert hands, and suggest that αSyn-SAA has potential to provide earlier diagnosis with comparable or superior accuracy to existing methods.


Parkinson Disease/diagnosis , alpha-Synuclein/genetics , Aged , Biomarkers , Disease Progression , Female , Gene Amplification , Humans , Male , Middle Aged , Parkinson Disease/genetics , Prognosis , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity , Terminology as Topic , Tomography, Emission-Computed, Single-Photon , alpha-Synuclein/cerebrospinal fluid
16.
Acta Neuropathol ; 142(3): 495-511, 2021 09.
Article En | MEDLINE | ID: mdl-33991233

The diagnosis of Parkinson's disease (PD) and atypical parkinsonian syndromes is difficult due to the lack of reliable, easily accessible biomarkers. Multiple system atrophy (MSA) is a synucleinopathy whose symptoms often overlap with PD. Exosomes isolated from blood by immunoprecipitation using CNS markers provide a window into the brain's biochemistry and may assist in distinguishing between PD and MSA. Thus, we asked whether α-synuclein (α-syn) in such exosomes could distinguish among healthy individuals, patients with PD, and patients with MSA. We isolated exosomes from the serum or plasma of these three groups by immunoprecipitation using neuronal and oligodendroglial markers in two independent cohorts and measured α-syn in these exosomes using an electrochemiluminescence ELISA. In both cohorts, α-syn concentrations were significantly lower in the control group and significantly higher in the MSA group compared to the PD group. The ratio between α-syn concentrations in putative oligodendroglial exosomes compared to putative neuronal exosomes was a particularly sensitive biomarker for distinguishing between PD and MSA. Combining this ratio with the α-syn concentration itself and the total exosome concentration, a multinomial logistic model trained on the discovery cohort separated PD from MSA with an AUC = 0.902, corresponding to 89.8% sensitivity and 86.0% specificity when applied to the independent validation cohort. The data demonstrate that a minimally invasive blood test measuring α-syn in blood exosomes immunoprecipitated using CNS markers can distinguish between patients with PD and patients with MSA with high sensitivity and specificity. Future optimization and validation of the data by other groups would allow this strategy to become a viable diagnostic test for synucleinopathies.


Exosomes/immunology , Multiple System Atrophy/diagnosis , Neurons/metabolism , Oligodendroglia/metabolism , Parkinson Disease/diagnosis , alpha-Synuclein/immunology , Adult , Aged , Aged, 80 and over , Area Under Curve , Biomarkers , Cohort Studies , Diagnosis, Differential , Enzyme-Linked Immunosorbent Assay , Female , Healthy Volunteers , Humans , Immunoprecipitation , Male , Middle Aged , Multiple System Atrophy/blood , Parkinson Disease/blood , Reproducibility of Results , Sensitivity and Specificity
17.
J Parkinsons Dis ; 11(1): 3-8, 2021.
Article En | MEDLINE | ID: mdl-33523021

Several COVID-19 vaccines have recently been approved for emergency use according to governmental immunization programs. The arrival of these vaccines has created hope for people with Parkinson's disease (PD), as this can help to mitigate their risk of becoming infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can lead to serious, life-threatening disease, at least among those with more advanced PD. However, both persons with PD and physicians looking after these individuals have expressed concerns about the vaccine's efficacy and safety in the specific context of PD and its symptomatic treatment. Here, we discuss our perspective on these concerns, based on our interpretation of the literature plus the unfolding experience with widespread vaccination in the population at large. Because the benefits and risks of COVID-19 vaccines do not appear to be different than in the general population, we recommend COVID-19 vaccination with approved vaccines to persons with PD, unless there is a specific contraindication. Some caution seems warranted in very frail and terminally ill elderly persons with PD living in long-term care facilities.


COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Parkinson Disease , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Vaccination
18.
Autophagy ; 17(5): 1205-1221, 2021 05.
Article En | MEDLINE | ID: mdl-32400277

Although macroautophagy/autophagy deficiency causes degenerative diseases, the deletion of essential autophagy genes in adipocytes paradoxically reduces body weight. Brown adipose tissue (BAT) plays an important role in body weight regulation and metabolic control. However, the key cellular mechanisms that maintain BAT function remain poorly understood. in this study, we showed that global or brown adipocyte-specific deletion of pink1, a Parkinson disease-related gene involved in selective mitochondrial autophagy (mitophagy), induced BAT dysfunction, and obesity-prone type in mice. Defective mitochondrial function is among the upstream signals that activate the NLRP3 inflammasome. NLRP3 was induced in brown adipocyte precursors (BAPs) from pink1 knockout (KO) mice. Unexpectedly, NLRP3 induction did not induce canonical inflammasome activity. Instead, NLRP3 induction led to the differentiation of pink1 KO BAPs into white-like adipocytes by increasing the expression of white adipocyte-specific genes and repressing the expression of brown adipocyte-specific genes. nlrp3 deletion in pink1 knockout mice reversed BAT dysfunction. Conversely, adipose tissue-specific atg7 KO mice showed significantly lower expression of Nlrp3 in their BAT. Overall, our data suggest that the role of mitophagy is different from general autophagy in regulating adipose tissue and whole-body energy metabolism. Our results uncovered a new mitochondria-NLRP3 pathway that induces BAT dysfunction. The ability of the nlrp3 knockouts to rescue BAT dysfunction suggests the transcriptional function of NLRP3 as an unexpected, but a quite specific therapeutic target for obesity-related metabolic diseases.Abbreviations: ACTB: actin, beta; BAPs: brown adipocyte precursors; BAT: brown adipose tissue; BMDMs: bone marrow-derived macrophages; CASP1: caspase 1; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; ChIP: chromatin immunoprecipitation; EE: energy expenditure; HFD: high-fat diet; IL1B: interleukin 1 beta; ITT: insulin tolerance test; KO: knockout; LPS: lipopolysaccharide; NLRP3: NLR family, pyrin domain containing 3; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RD: regular diet; ROS: reactive oxygen species; RT: room temperature; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); WT: wild-type.


Adipose Tissue, Brown/metabolism , Autophagy/physiology , Inflammasomes/metabolism , Mitophagy/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Adipocytes/metabolism , Animals , Energy Metabolism/physiology , Mice, Knockout , Mitochondria/metabolism , Mitophagy/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Reactive Oxygen Species/metabolism
19.
Ann Clin Transl Neurol ; 8(2): 374-384, 2021 02.
Article En | MEDLINE | ID: mdl-33373501

BACKGROUND: Assays that specifically measure α-synuclein seeding activity in biological fluids could revolutionize the diagnosis of Parkinson's disease. Recent improvements in α-synuclein real-time quaking-induced conversion assays of cerebrospinal fluid have dramatically reduced reaction times from 5-13 days down to 1-2 days. OBJECTIVE: To test our improved assay against a panel of cerebrospinal fluid specimens from patients with Parkinson's disease and healthy controls from the MJ Fox Foundation/NINDS BioFIND collection. METHODS: Specimens collected from healthy controls and patients with clinically typical moderate-to-advanced Parkinson's disease were tested without prior knowledge of disease status. Correlative analyses between assay parameters and clinical measures were performed by an independent investigator. RESULTS: BioFIND samples gave positive signals in 105/108 (97%) Parkinson's disease cases versus 11/85 (13%) healthy controls. Receiver operating characteristic analyses of diagnosis of cases versus healthy controls gave areas under the curve of 95%. Beyond binary positive/negative determinations, only weak correlations were observed between various assay response parameters and Parkinson's disease clinical measures or other cerebrospinal fluid analytes. Of note, REM sleep behavioral disorder questionnaire scores correlated with the reaction times needed to reach 50% maximum fluorescence. Maximum fluorescence was inversely correlated with Unified Parkinson's Disease Rating Scale motor scores, which was driven by the patients without REM sleep behavioral disorder. CONCLUSIONS: Our improved α-synuclein seed amplification assay dramatically reduces the time needed to diagnose Parkinson's disease while maintaining the high-performance standards associated with previous α-synuclein seed assays, supporting the clinical utility of this assay for Parkinson's disease diagnosis.


Biological Assay/methods , Biomarkers/cerebrospinal fluid , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/diagnosis , alpha-Synuclein/cerebrospinal fluid , Aged , Correlation of Data , Female , Humans , Male , Middle Aged , Parkinson Disease/physiopathology
20.
Elife ; 92020 07 20.
Article En | MEDLINE | ID: mdl-32687053

Changes in striatal cholinergic interneuron (ChI) activity are thought to contribute to Parkinson's disease pathophysiology and dyskinesia from chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment, but the physiological basis of these changes is unknown. We find that dopamine lesion decreases the spontaneous firing rate of ChIs, whereas chronic treatment with L-DOPA of lesioned mice increases baseline ChI firing rates to levels beyond normal activity. The effect of dopamine loss on ChIs was due to decreased currents of both hyperpolarization-activated cyclic nucleotide-gated (HCN) and small conductance calcium-activated potassium (SK) channels. L-DOPA reinstatement of dopamine normalized HCN activity, but SK current remained depressed. Pharmacological blockade of HCN and SK activities mimicked changes in firing, confirming that these channels are responsible for the molecular adaptation of ChIs to dopamine loss and chronic L-DOPA treatment. These findings suggest that targeting ChIs with channel-specific modulators may provide therapeutic approaches for alleviating L-DOPA-induced dyskinesia in PD patients.


Cholinergic Neurons/physiology , Corpus Striatum/physiology , Dopamine/administration & dosage , Interneurons/physiology , Levodopa/administration & dosage , Animals , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Male , Mice , Mice, Inbred C57BL , Random Allocation , Small-Conductance Calcium-Activated Potassium Channels/metabolism
...