Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Gene ; 898: 148080, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38101712

RESUMEN

Bacillus simplex Sneb45 is a plant-growth-promoting rhizobacterium that promotes soybean growth and systemic resistance to cyst nematode. To investigate transcriptional changes in soybean roots in response to B. simplex Sneb45 treatment, transcriptome analysis and quantitative real-time PCR were conducted to detect and validate the differentially expressed genes (DEGs). In total, 19,109 DEGs were obtained. After B. simplex Sneb545 treatment, 970 and 1265 genes were up- and down-regulated at 5 days post-inoculation (dpi), respectively, and 142 and 47 genes were up- and down-regulated at 10 dpi, respectively, compared with untreated soybean roots. Functional annotation of DEGs indicated that B. simplex Sneb545 regulated soybean growth and defense against cyst nematode possibly through genes related to auxin, gibberellin, and NB-LRR protein. In addition, GO and KEGG enrichment analyses indicated that the DEGs were enriched in metabolism, signal transduction, and plant-pathogen interaction pathways. Moreover, the auxin and gibberellin contents were lower in B. simplex Sneb545-treated soybean roots than in untreated roots at 5 dpi. B. simplex Sneb545 possibly altered the expression of wound-induced protein and NAC transcription factor to regulate soybean growth and defense against cyst nematode. Our study provided deep insights into the alterations in soybean transcriptome after exposure to B. simplex Sneb45 and a theoretical basis for further exploring molecular functions underlying the biological control activity of B. simplex Sneb545.


Asunto(s)
Bacillus , Nematodos , Tylenchoidea , Animales , Glycine max/genética , Transcriptoma , Giberelinas/metabolismo , Perfilación de la Expresión Génica , Nematodos/genética , Ácidos Indolacéticos/metabolismo , Enfermedades de las Plantas/genética , Raíces de Plantas/metabolismo , Tylenchoidea/genética
3.
J Agric Food Chem ; 71(46): 18059-18073, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37948664

RESUMEN

Ubiquitination genes are key components of plant responses to biotic stress. GmPUB20A, a ubiquitination gene, plays a negative role in soybean resistance to soybean cyst nematode (SCN). In this study, we employed high-throughput sequencing to investigate transcriptional changes in GmPUB20A overexpressing and RNA-interfering transgenic hairy roots. Totally, 7661 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that DEGs were significantly enriched in disease resistance and signal transduction pathways. In addition, silencing Glyma.15G021600 and Glyma.09G284700 by siRNA, the total number of nematodes was decreased by 33.48% and 27.47% than control plants, respectively. Further, GUS activity and reactive oxygen species (ROS) assays revealed that GmPUB20A, Glyma.15G021600, and Glyma.09G284700 respond to SCN parasitism and interfere with the accumulation of ROS in plant roots, respectively. Collectively, our study provides insights into the molecular mechanism of GmPUB20A in soybean resistance to SCN.


Asunto(s)
Quistes , Nematodos , Tylenchoidea , Animales , Glycine max/genética , Glycine max/metabolismo , ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Enfermedades de las Plantas/genética , Tylenchoidea/fisiología , Transcriptoma , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
4.
PLoS One ; 15(8): e0237194, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760135

RESUMEN

We aimed to profile the metabolism of soybean roots that were infected with soybean cyst nematodes and treated with Bacillus simplex to identify metabolic differences that may explain nematode resistance. Compared with control soybean roots, B. simplex-treated soybean roots contained lower levels of glucose, fructose, sucrose, and trehalose, which reduced the nematodes' food source. Furthermore, treatment with B. simplex led to higher levels of melibiose, gluconic acid, lactic acid, phytosphingosine, and noradrenaline in soybean roots, which promoted nematocidal activity. The levels of oxoproline, maltose, and galactose were lowered after B. simplex treatment, which improved disease resistance. Collectively, this study provides insight into the metabolic alterations induced by B. simplex treatment, which affects the interactions with soybean cyst nematodes.


Asunto(s)
Bacillus/patogenicidad , Resistencia a la Enfermedad , Glycine max/parasitología , Metaboloma , Nematodos/patogenicidad , Animales , Metabolismo de los Hidratos de Carbono , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Glycine max/metabolismo , Glycine max/microbiología
5.
BMC Plant Biol ; 18(1): 86, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29751738

RESUMEN

BACKGROUND: Soybean cyst nematode (SCN) is the most devastating pathogen of soybean. Our previous study showed that the plant growth-promoting rhizobacterium Bacillus simplex strain Sneb545 promotes soybean resistance to SCN. Here, we conducted a combined metabolomic and transcriptomic analysis to gain information regarding the biological mechanism of defence enhancement against SCN in Sneb545-treated soybean. To this end, we compared the transcriptome and metabolome of Sneb545-treated and non-treated soybeans under SCN infection. RESULTS: Transcriptomic analysis showed that 6792 gene transcripts were common in Sneb545-treated and non-treated soybeans. However, Sneb545-treated soybeans showed a higher concentration of various nematicidal metabolites, including 4-vinylphenol, methionine, piperine, and palmitic acid, than non-treated soybeans under SCN infection. CONCLUSIONS: Overall, our results validated and expanded the existing models regarding the co-regulation of gene expression and metabolites in plants, indicating the advantage of integrated system-oriented analysis.


Asunto(s)
Bacillus/metabolismo , Glycine max/parasitología , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta , Tylenchoidea , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genes de Plantas/fisiología , Metabolómica , Enfermedades de las Plantas/inmunología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Glycine max/genética , Glycine max/metabolismo , Glycine max/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA