Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Sci Total Environ ; 927: 172212, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38580121

Organophosphate esters (OPEs) have garnered significant attention in recent years. In view of the enormous ecosystem services value and severe degradation of coral reefs in the South China Sea, this study investigated the occurrence, distribution, and bioaccumulation of 11 OPEs in five coral regions: Daya Bay (DY), Weizhou Island (WZ), Sanya Luhuitou (LHT), Xisha (XS) Islands, and Nansha (NS) Islands. Although OPEs were detected at a high rate, their concentration in South China Sea seawater (1.56 ± 0.89 ng L-1) remained relatively low compared to global levels. All OPEs were identified in coral tissues, with Luhuitou (575 ± 242 ng g-1 dw) showing the highest pollution levels, attributed to intense human activities. Coral mucus, acting as a defense against environmental stresses, accumulated higher ∑11OPEs (414 ± 461 ng g-1 dw) than coral tissues (412 ± 197 ng g-1 dw) (nonparametric test, p < 0.05), and their compositional characteristics varied greatly. In the case of harsh aquatic environments, corals increase mucus secretion and then accumulate organic pollutants. Tissue-mucus partitioning varied among coral species. Most OPEs were found to be bioaccumulative (BAFs >5000 L kg-1) in a few coral tissue samples besides Triphenyl phosphate (TPHP). Mucus' role in the bioaccumulation of OPEs in coral shouldn't be ignored.


Anthozoa , Environmental Monitoring , Esters , Organophosphates , Water Pollutants, Chemical , Animals , China , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Organophosphates/analysis , Organophosphates/metabolism , Esters/analysis , Bioaccumulation , Seawater/chemistry , Coral Reefs
2.
Sci Total Environ ; 917: 170359, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38281641

Organophosphate esters (OPEs) have been a class of emerging environmental contaminants. However, studies on their environmental behavior, specifically their adsorption-desorption behavior between sediment and seawater in estuarine and coastal areas, remain limited. To address this gap, our study focused on investigating the levels and behavior of 11 OPEs in sediment samples collected from the Beibu Gulf, South China Sea, encompassing estuaries and coastal regions. The total concentrations of 11 OPEs (Σ11OPEs) in the sediments exhibit a significant decrease in summer, both in seagoing rivers (4.67 ± 2.74 ng/g dw) and the coastal zone (5.11 ± 3.71 ng/g dw), compared to winter levels in seagoing rivers (8.26 ± 4.70 ng/g dw) and the coastal zone (7.71 ± 3.83 ng/g dw). Chlorinated OPEs dominated the sediments, constituting 63 %-76 % of the total. Particularly, port and mariculture areas showed the highest levels of OPEs. Through load estimation analysis, it was revealed that the sedimentary OPEs in Qinzhou Bay (221 ± 128 kg) had the highest load, with input from the Qin River identified as a significant source. Chlorinated OPEs showed a trend of desorption from sediments to the water column with increasing salinity, emphasizing the crucial role of land-based OPEs input through suspended particulate matter in rivers as a pathway to the ocean. The impact of strong flow in estuarine environments was highlighted, as it can scour sediments, generate suspended sediments, and release OPEs into the water bodies. Additionally, the results of the ecological risk assessment indicated that most of the OPEs posed low-risk levels. However, attention is warranted for the contamination levels of some chlorinated OPEs, emphasizing the need for ongoing monitoring and assessment.

3.
Nanoscale ; 15(18): 8181-8188, 2023 May 11.
Article En | MEDLINE | ID: mdl-37078095

Metal-organic framework (MOF)-derived metal oxide semiconductors have recently received extensive attention in gas sensing applications due to their high porosity and three-dimensional architecture. Still, challenges remain for MOF-derived materials, including low-cost and facile synthetic methods, rational nanostructure design, and superior gas-sensing performances. Herein, a series of Fe-MIL-88B-derived trimetallic FeCoNi oxides (FCN-MOS) with a mesoporous structure were synthesized by a one-step hydrothermal reaction followed by calcination. The FCN-MOS system consists of three main phases: α-Fe2O3 (n-type), CoFe2O4, and NiFe2O4 (p-type), and the nanostructure and pore size can be controlled by altering the content of α-Fe2O3, CoFe2O4, and NiFe2O4. The sensors based on FCN-MOS exhibit a high response of 71.9, a good selectivity towards 100 ppm ethanol at 250 °C, and long-term stability up to 60 days. Additionally, the FCN-MOS-based sensors show a p-n transition gas sensing behavior with the alteration of the Fe/Co/Ni ratio.

4.
Chemosphere ; 313: 137652, 2023 Feb.
Article En | MEDLINE | ID: mdl-36581113

Despite organophosphate esters (OPEs) are widely prevalent in the environment, however, limited information is available regarding their occurrence, trophodynamics, and exposure risks in coral reef ecosystems. In this study, 11 OPEs were investigated in a tropical marine food web (7 fish species and 9 benthos species) from the Xisha (XS) Islands, South China Sea (SCS). The ∑11OPEs were 1.52 ± 0.33 ng/L, 2227 ± 2062 ng/g lipid weight (lw), 1024 ± 606 ng/g lw, and 1800 ± 1344 ng/g lw in seawater, fish, molluscs, and corals, respectively. Tris (2-chloroisopropyl) phosphate (TCIPPs) were the dominant OPEs in seawater, fish, and molluscs, while tris (2-butoxyethyl) phosphate (TBOEP) predominated in coral tissues. Abiotic and biotic factors jointly affect the OPEs enrichment in marine organisms. Trophic magnification factors (TMFs) (range: 1.31-39.2) indicated the biomagnification potency of OPEs. A dietary exposure risk assessment indicated that OPEs at current levels in coral reef fish posed a low risk to human health but were not negligible. Overall, this study contributes to a further understanding of the environmental behaviors of OPEs in coral reef ecosystems.


Anthozoa , Flame Retardants , Animals , Humans , Coral Reefs , Food Chain , Ecosystem , Environmental Monitoring , Organophosphates , Phosphates , China , Fishes , Esters
5.
Environ Sci Pollut Res Int ; 30(12): 32866-32881, 2023 Mar.
Article En | MEDLINE | ID: mdl-36472738

Hydrothermal treatment (HT) is envisaged as a promising technology to treat the lignocellulosic biomass. HT temperature is an important parameter influencing the hydrolysate compositions such as organic compounds and potential inhibitors, and therefore affect the subsequential anaerobic digestion (AD) process. Herein, HT-AD was employed to treat the wheat straw-derived digestate. The HT temperature of 190 °C was proved to be the best performance with a higehst reducing sugar yield (45.05 mg g-1) in the hydrolysate and a highest methane yield (120.8 mL gTS-1) from the AD of the hydrolysate, which was 42.5% higher than the methane yield in the control without the hydrolysate addition (84.8 mL gTS-1). 3-Furaldehyde was the dominant organic in the hydrolysates. The HT temperature of 210 °C led to the presence of AD inhibitory moieties (e.g., phenols and furans) in the hydrolysate, resulting in a low methane yield. Although the treatments with the addition of 100% hydrolysate outperformed those of 50% hydrolysate in the methane yields in the late stage, the latter had higher methane yields in the first stage, suggesting that the additional ratios of hydrolysates should be carefully considered in AD, especially the detrimental effects of inhibitors and adaptability issues of AD consortia. The MiSeq sequencing showed that the hydrolysis/acidogenesis was dominant in the first stage, while methanogenesis became dominant in the late stage with the acetoclastic/hydrogenotrophic methanogens (Methanosarcina and Methanobacterium) enriched in the hydrolysate-feeding reactors. These findings demonstrated that a integration of HT-AD was a promising approach for the digestate valorization and to reduce the potential carbon emission from waste treatments.


Lignin , Methane , Anaerobiosis , Temperature , Lignin/metabolism , Bioreactors , Biofuels
6.
Chemosphere ; 308(Pt 1): 136295, 2022 Dec.
Article En | MEDLINE | ID: mdl-36064010

Multiple environmental pressures caused by global warming and human activities have aroused widespread concern about PAHs pollution in tropical marine coral reef regions (CRRs). However, the trophodynamics of PAHs in the food webs of the CRRs and the related influence factors have not been reported. This study investigated the occurrence, trophic amplification, and transmission of PAHs in various organisms selecting between at least representative species for each level in CRRs of the South China Sea (SCS); revealed their driving mechanisms; and explored the trophodynamics of PAHs in the food web of the coral reef ecosystem. Results showed that more PAHs can be accumulated in the mantle tissue of Tridacnidae, and the proportion of mantle tissue of Tridacnidae increases with the increase of latitude (y = 0.01x + 0.17, R2 = 0.49, p < 0.05). Latitude drives the differential occurrence level and bioaccumulation of PAHs in tropical marine organisms, and also affects the trophodynamics of PAHs in aquatic ecosystem food webs. PAHs undergo trophic amplification in the food webs of tropical marine ecosystems represented by coral reefs, thus further aggravating the negative environmental impact on coral reef ecosystems. The cancer risk caused by accidental ingestion of PAHs by humans through consumption of seafood in CRRs is very low, but we should be alert to the biomagnification effect of PAHs.


Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Bioaccumulation , China , Coral Reefs , Ecosystem , Environmental Monitoring , Fishes , Food Chain , Humans , Risk Assessment , Water Pollutants, Chemical/analysis
7.
Environ Res ; 214(Pt 3): 114060, 2022 11.
Article En | MEDLINE | ID: mdl-35981611

Recent studies have indicated that coral mucus plays an important role in the bioaccumulation of a few organic pollutants by corals, but no relevant studies have been conducted on organochlorine pesticides (OCPs). Previous studies have also indicated that OCPs widely occur in a few coral reef ecosystems and have a negative effect on coral health. Therefore, this study focused on the occurrence and bioaccumulation of a few OCPs, such as dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB) and p,p'-methoxychlor (MXC), in the coral tissues and mucus as well as in plankton and seawater from a coastal reef ecosystem (Weizhou Island) in the South China Sea. The results indicated that DDTs were the predominant OCPs in seawater and marine biota. Higher concentrations of OCPs in plankton may contribute to the enrichment of OCPs by corals. The significantly higher total OCP concentration (∑8OCPs) found in coral mucus than in coral tissues suggested that coral mucus played an essential role in resisting enrichment of OCPs by coral tissues. This study explored the different functions of coral tissues and mucus in OCP enrichment and biodegradation for the first time, highlighting the need for OCP toxicity experiments from both tissue and mucus perspectives.


Anthozoa , Hydrocarbons, Chlorinated , Pesticides , Water Pollutants, Chemical , Animals , Anthozoa/metabolism , China , Coral Reefs , Ecosystem , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Plankton/metabolism , Water Pollutants, Chemical/analysis
8.
J Hazard Mater ; 436: 129214, 2022 08 15.
Article En | MEDLINE | ID: mdl-35739736

As emerging pollutants, the environmental geochemistry of organophosphate esters (OPEs) in the coastal zone with multiple functional areas are still less recognized. This study investigated spatiotemporal distribution, sources and risks of 11 widely used OPEs in surface waters from seagoing rivers and multiple coastal functional areas of the Beibu Gulf. The results indicated that significantly higher ∑11OPEs (total concentrations of 11 OPEs, ng/L) occurred in summer (34.2-1227) than in winter (20.6-840), as a result of the high emission caused by climate reasons. In general, higher ∑11OPEs occurred in rivers (41.2-1227) than in the coast (34.2-809) in summer, especially in the urban rivers, while in winter, higher ∑11OPEs occurred in the coast (23.4-840 vs 20.6-319 in rivers) because of obviously higher ∑11OPEs in marine fishery areas (99-840). Source identification revealed that fishery activity, especially fishing vessels, and urban rivers were the main sources of OPEs in the Beibu Gulf. For the individual OPE, only tri-n-butyl phosphate (TNBP) may have ecological risks to aquatic organisms in a few sites, but if considering the additive effects, the OPEs mixtures would pose a high risk to algae and low to medium threats to crustaceans and fish.


Flame Retardants , Water Pollutants, Chemical , Animals , China , Environmental Monitoring/methods , Esters , Fisheries , Flame Retardants/analysis , Organophosphates , Risk Assessment , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Environ Sci Pollut Res Int ; 29(35): 52493-52506, 2022 Jul.
Article En | MEDLINE | ID: mdl-35258733

The coastal zone is a crucial transitional area between land and ocean, which is facing enormous pressure due to global climate change and anthropogenic activities. It is essential to pay close attention to the pollution caused by polycyclic aromatic hydrocarbons (PAHs) in the coastal environment and their effect on human health. The pollution status of PAHs was investigated in the Beibu Gulf, taking into consideration various environmental media. The results showed that the total concentration of 16 PAHs (Σ16PAHs) was significantly higher in winter than in summer. Compared to the coastal area, the status of PAHs in the estuarine areas was found to be more severe in summer, while the regional difference was insignificant in winter. In summer, the Σ16PAHs in estuarine waters (71.4 ± 9.58 ng/L) > coastal waters (50.4 ± 9.65 ng/L); estuarine sediment (146 ± 116 ng/g) > coastal zone (76.9 ± 108 ng/g). The source apportionment indicated that spilled oil, biomass, and coal burning were the primary sources of PAHs in the water. The predominant sources of pollution in the sediments were spilled oil, fossil fuel burning, and vehicle emissions. With regard to the status of PAHs in marine organisms in the coastal area of the Beibu Gulf, the highest average concentration of PAHs was indicated in shellfishes (183 ± 165 ng/g), followed by fishes (73.7 ± 57.2 ng/g), shrimps (42.7 ± 19.2 ng/g), and crabs (42.7 ± 19.2 ng/g) in Beibu Gulf coastal area. The calculated bioaccumulation factor indicates a low bioaccumulation capacity of PAHs in various seafood considering the ambient environment. The human health risk assessment considering multiple age groups indicates minimal health risk on accidental ingestion of PAHs through seafood. However, it is suggested that the intake of shellfish in children be controlled.


Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Bioaccumulation , Child , China , Environmental Monitoring/methods , Estuaries , Geologic Sediments , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Seafood/analysis , Water Pollutants, Chemical/analysis
10.
Chemosphere ; 286(Pt 2): 131711, 2022 Jan.
Article En | MEDLINE | ID: mdl-34340115

The levels, fate, and potential sources of 22 organochlorine pesticides (OCPs) in coral tissues and the surrounding air-seawater system from the South China Sea (SCS) were elucidated for the first time. ∑22OCPs (total concentration of 22 OCPs) (16.1-223 pg L-1) was relatively higher in coastal seawater than in offshore seawater, which may be the widespread influence of coastal pollution inputs under the western boundary current. The atmospheric ∑22OCPs were predominantly distributed in the gas phase (48.0-2264 pg m-3) and were mainly influenced by continental air mass origins. The air-seawater exchange of selected OCPs showed that OCPs tended to migrate from the atmosphere to seawater. The distribution of ∑22OCPs in coral tissues (0.02-52.2 ng g-1 dw) was significantly correlated with that in air samples, suggesting that OCPs may have a migration pattern of atmosphere-ocean corals in the SCS. Corals exhibited higher bioaccumulation ability (Log BAFs: 2.42-7.41) for OCPs. Source analysis showed that the new application of technical Chlordanes (CHLs) was primarily responsible for the current levels of CHLs in the surrounding environment over the SCS, while historical residues were the primary sources of other OCPs.


Anthozoa , Hydrocarbons, Chlorinated , Pesticides , Animals , China , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Seawater
11.
Mar Pollut Bull ; 172: 112817, 2021 Nov.
Article En | MEDLINE | ID: mdl-34364141

In this study, polycyclic aromatic hydrocarbons (PAHs) were measured in sediments of the Beibu Gulf in 2017 to investigate sources and a risk assessment. The results showed the total PAH concentration (∑16PAHs) in sediments of the Beibu Gulf in 2017 (17.6 ± 16.7 ng g-1) was significantly lower than that in 2010 (47.8 ± 27.4 ng g-1). The ∑16PAHs concentrations varied spatially within the Beibu Gulf, impacted by point source pollution. The results of adsorption/desorption and water-air partitioning suggest that the environmental behavior of PAHs in the Beibu Gulf is affected by atmospheric deposition and sediment-water partitioning. A risk assessment showed that the PAHs in sediments were within a safety threshold. Three source apportionment methods show that oil spills and oil and biomass burning were the most important (>83.8%) sources of PAHs in sediments of the Beibu Gulf.


Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , China , Environmental Monitoring , Geologic Sediments , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
12.
Environ Sci Pollut Res Int ; 28(37): 51772-51785, 2021 Oct.
Article En | MEDLINE | ID: mdl-33990921

The pretreatment of wheat straw has been recognized to be an essential step prior to anaerobic digestion, owing to the high abundance of lignocellulosic materials. In order to choose economical and effective techniques for the disposal of wheat straw, effects of five pretreatment methods including acid, alkali, co-pretreatment of acid and alkali, CaO2, and liquid digestate of municipal sewage sludge on anaerobic digestion of wheat straw were investigated by analyzing biogas production and organic matter degradation in the study. The results showed that among these pretreatment methods, the methane yield was highest in the liquid digestate pretreated-wheat straw with 112.6 mL gTS-1, followed by the acid, alkali, and CaO2 pretreatments, and the lowest was observed in the co-pretreatment of acid and alkali. Illumina MiSeq sequencing of the microbial communities in the anaerobic digesters revealed that the genera Ruminiclostridium including Ruminiclostridium and Ruminiclostridium 1, Hydrogenispora, and Capriciproducens were the main hydrolytic bacteria, acidogenic bacteria, and acetogenic bacteria, respectively, in the anaerobic digesters. Capriciproducens and Hydrogenispora dominated in the first and the later stages, respectively, in the anaerobic digesters, which could work as indicators of the anaerobic co-digestion stage of sludge and wheat straw. The total solid and SO42--S contents of the solid digestate and the NH4+-N concentration of the liquid digestate had a significant influence on the microbial community in the digesters. These findings indicated that liquid digestate pretreatment was a potential option to improve the anaerobic digestion of wheat straw, due to the low cost without additional chemical agents.


Biofuels , Microbiota , Anaerobiosis , Bioreactors , Methane , Triticum
13.
J Hazard Mater ; 412: 125214, 2021 06 15.
Article En | MEDLINE | ID: mdl-33529835

Our previous study revealed PAHs' wide occurrence in corals from multiple coral reef regions (CRRs) in the South China Sea. However, little is known about their occurrence, distribution, fate, and sources in the ambient environment of these CRRs. This study aimed to resolve these research gaps. The results showed ∑15PAHs (total concentrations of 15 US EPA priority controlled PAHs exclude naphthalene) in the atmosphere (gas-phase: 0.31-49.6 ng m-3; particle-phase: 2.6-649 pg m-3) were mainly influenced by air mass origins. Southwesterly wind caused higher ∑15PAHs than the southeasterly wind. The ∑15PAHs in seawater from the nearshore (462 ± 244 ng L-1) was higher than that from offshore Zhongsha Islands (80.5 ± 72.1 ng L-1) because of the effect of terrigenous pollution and ocean current. Source apportionment indicated that the mixed sources of spilled oil and combustion from neighboring countries were the main contributors to PAHs in these CRRs. The total deposition fluxes showed that PAHs tended to migrate from the atmosphere to seawater. Global warming may inhibit this process, but PAHs still have a migration pattern of atmosphere-ocean-corals, which will further increase the environmental pressure on coral reef ecology.

14.
Sci Total Environ ; 752: 141882, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-32889286

Antibiotic residues in mariculture environments have been detected globally, while little information is available about their dynamic levels, source, behavior, and fate during the whole culture process. In this study, the dynamic occurrence, bioaccumulation, source, fate, and human dietary risk of 19 antibiotics were investigated in different breeding stages of mariculture ponds near the Maowei Sea, South China. Fourteen antibiotics, including three sulfonamides (SAs), five fluoroquinolones (FQs), three macrolides (MLs), and two chloramphenicols (CAPs), were detected in the mariculture ponds, with FQs being the most abundant antibiotics. Significant variations of antibiotic concentration occurred during the whole culture process. Severe weather, especially typhoons and rainstorms, resulted in the average highest levels of ∑19antibiotics (mean: 567 ng L-1) in mariculture ponds. The source apportionment estimated for the mariculture ponds showed that direct application was the primary source of antibiotics (91.2%). The antibiotics in mariculture ponds were mainly discharged through aquaculture wastewater (65.8%) and settling particles (33.8%). The estimated annual input of antibiotics into the Maowei Sea was 2.24 times higher through the two main rivers (48.0 kg a-1) than through the mariculture wastewater (24.1 kg a-1). The apparent bioaccumulation factors (ABAFs) confirmed that young and adult tilapia accumulated more sulfamethoxazole (SMX) and norfloxacin (NOX), respectively. The result from the estimated daily intakes suggested that the antibiotics in the seafood could not pose a risk to human health by dietary exposure assessment. CAPSULE: Big variation of antibiotic concentration occurred during the whole culture process in the mariculture farms, and the storm increased antibiotic application.


Ponds , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , China , Environmental Monitoring , Humans , Water Pollutants, Chemical/analysis
15.
Sci Rep ; 10(1): 15179, 2020 09 16.
Article En | MEDLINE | ID: mdl-32938983

Seventy-five wild tilapia samples from six rivers (ten sites) in Guangxi province were collected and analyzed for 53 organochlorine compounds. DDTs, endosulfan, and PCBs were the most dominant compounds found in this study. Tiandong County (TD) and Guigang City (GG) sites were found to be heavily contaminated with high levels of endosulfan (385-925 ng/g lw) and/or DDTs (20.1-422 ng/g lw). The diagnostic ratios indicated that the residues of DDTs and endosulfan in wild tilapia are associated with historical applications as well as the recent introduction of technical DDTs and endosulfan at some sampling sites. The correlation between total length, body mass, and organochlorines (OCs) was higher than the correlation between age and lipid content. There was no significant correlation between organochlorine pesticides (OCPs) and lipid content. Therefore, for organisms, the feeding intensity (related to length and mass) of fish could better reflect degree of pollution than exposure time (age) of fish. The hazardous ratios for the 50th and 95th percentile data of OCPs and PCBs in fish were both below 1, suggesting that daily exposure to OCPs and PCBs yields a lifetime cancer risk lower than 1 in 10,000.


Cell Extracts/chemistry , Hydrocarbons, Chlorinated/analysis , Muscles/chemistry , Pesticides/analysis , Tilapia/physiology , Water Pollutants, Chemical/analysis , Animals , Body Weight , Body Weights and Measures , China , Environmental Pollution , Rivers
16.
Environ Sci Pollut Res Int ; 27(11): 12280-12292, 2020 Apr.
Article En | MEDLINE | ID: mdl-31993906

Aerobic CH4 oxidation coupled to denitrification (AME-D) can not only mitigate the emission of greenhouse gas (e.g., CH4) to the atmosphere, but also reduce NO3- and/or NO2- and alleviate nitrogen pollution. The effects of O2 tension on the community and functional gene expression of methanotrophs and denitrifiers were investigated in this study. Although higher CH4 oxidation occurred in the AME-D system with an initial O2 concentration of 21% (i.e., the O2-sufficient condition), more NO3--N was removed at the initial O2 concentration of 10% (i.e., the O2-limited environment). Type I methanotrophs, including Methylocaldum, Methylobacter, Methylococcus, Methylomonas, and Methylomicrobium, and type II methanotrophs, including Methylocystis and Methylosinus, dominated in the AME-D systems. Compared with type II methanotrophs, type I methanotrophs were more abundant in the AME-D systems. Proteobacteria and Actinobacteria were the main denitrifiers in the AME-D systems, and their compositions varied with the O2 tension. Quantitative PCR of the pmoA, nirS, and 16S rRNA genes showed that methanotrophs and denitrifiers were the main microorganisms in the AME-D systems, accounting for 46.4% and 24.1% in the O2-limited environment, respectively. However, the relative transcripts of the functional genes including pmoA, mmoX, nirK, nirS, and norZ were all less than 1%, especially the functional genes involved in denitrification under the O2-sufficient condition, likely due to the majority of the denitrifiers being dormant or even nonviable. These findings indicated that an optimal O2 concentration should be used to optimize the activity and functional gene expression of aerobic methanotrophs and denitrifiers in AME-D systems.


Methane , Microbiota , Denitrification , Oxidation-Reduction , Oxygen , Phylogeny , RNA, Ribosomal, 16S , Soil Microbiology
...