Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 172
1.
Adv Healthc Mater ; : e2401788, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38864814

Coated microneedles (CMNs) are a minimally invasive platform for immediate-release transdermal drug delivery. However, the practical applications of CMNs have been significantly hindered by the challenges associated with complex formulations, single function, and limited drug loading capacity. In this study, we have developed a spiderweb-shaped iron-coordinated polymeric nanowire network (Fe-IDA NWs). The resulting Fe-IDA NWs are endowed with a certain viscosity due to the synergy of multiple supramolecular interactions. This allows them to replace traditional polymeric thickeners as microneedle coatings. The Fe-IDA NWs-coated microneedles (Fe-IDA MNs) display rapid disintegration in the skin model, which also enables the swift diffusion of Fe-IDA NWs and their payloads into the deeper skin layers. Additionally, Fe-IDA MNs exhibit desirable enzymatic activity and potential antibacterial ability. Thus, Fe-IDA MNs can enhance the therapeutic efficacy against wound infection through synergistic effects, and avoid the overly complicated formulation and the release of non-therapeutic molecules of conventional CMNs. As a proof-of-concept, Fe-IDA MNs loaded with chlorin e6 showed a synergistic chemodynamic-photodynamic antibacterial effect in a methicillin-resistant Staphylococcus aureus-infected wound model in mice. Collectively, this work has significant implications for the future of CMNs-based transdermal drug delivery systems and expands the application fields of metal coordination polymer materials. This article is protected by copyright. All rights reserved.

2.
Macromol Rapid Commun ; : e2400136, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38593288

In this work, a natural medicine, baicalin, is designed for the treatment of psoriasis with the aid of hyaluronic acid (HA)-based MNs patches. This is also to improve the solubility of baicalin and increase its residence time in infected part, which is made into nanoparticles by complexation with humic acid and Eu2+. The baicalin nanoparticles loaded-MNs exhibit satisfactory rigidity, minimum injury, and controlled drug delivery. The anti-reactive oxygen species (anti-ROS) and anti-inflammatory action are verified by the effective scavenging oxygen and nitrogen radicals. In addition, the loading of baicalin nanoparticles brings remarkable photothermic effect to the MNs, enabling the device to release a controlled drug under near-infrared region II (NIR-II) laser irradiation. With the aid of NIR-II laser, the baicalin-mediated treatment of psoriasis is significantly improved by expediting radical scavenging and suppressing inflammation. The design of baicalin MNs provides a new idea for the treatment of chronic disease.

3.
ACS Nano ; 18(11): 8083-8098, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38456744

Active polymetallic atomic clusters can initiate heterogeneous catalytic reactions in the tumor microenvironment, and the products tend to cause manifold damage to cell metabolic functions. Herein, bimetallic PtPd atomic clusters (BAC) are constructed by the stripping of Pt and Pd nanoparticles on nitrogen-doped carbon and follow-up surface PEGylation, aiming at efficacious antineoplastic therapy through heterogeneous catalytic processes. After endocytosed by tumor cells, BAC with catalase-mimic activity can facilitate the decomposition of endogenous H2O2 into O2. The local oxygenation not only alleviates hypoxia to reduce the invasion ability of cancer cells but also enhances the yield of •O2- from O2 catalyzed by BAC. Meanwhile, BAC also exhibit peroxidase-mimic activity for •OH production from H2O2. The enrichment of reactive oxygen species (ROS), including the radicals of •OH and •O2-, causes significant oxidative cellular damage and triggers severe apoptosis. In another aspect, intrinsic glutathione (GSH) peroxidase-like activity of BAC can indirectly upregulate the level of lipid peroxides and promote ferroptosis. Such deleterious redox dyshomeostasis caused by ROS accumulation and GSH consumption also results in immunogenic cell death to stimulate antitumor immunity for metastasis suppression. Collectively, this paradigm is expected to inspire more facile designs of polymetallic atomic clusters in disease therapy.


Antineoplastic Agents , Ferroptosis , Neoplasms , Humans , Hydrogen Peroxide , Reactive Oxygen Species , Apoptosis , Peroxidases , Antineoplastic Agents/pharmacology , Catalysis , Glutathione , Cell Line, Tumor , Neoplasms/drug therapy , Tumor Microenvironment
4.
Biomaterials ; 305: 122446, 2024 Mar.
Article En | MEDLINE | ID: mdl-38150772

Traditional Fe-based Fenton reaction for inducing oxidative stress is restricted by random charge transfer without oriental delivery, and the resultant generation of reactive oxygen species (ROS) is always too simplistic to realize a satisfactory therapeutic outcome. Herein, FeNv/CN nanosheets rich in nitrogen vacancies are developed for high-performance redox dyshomeostasis therapy after surface conjugation with polyethylene glycol (PEG) and cyclic Arg-Gly-Asp (cRGD). Surface defects in FeNv/CN serve as electron traps to drive the directional transfer of the excited electrons to Fe atom sites under ultrasound (US) actuation, and the highly elevated electron density promote the catalytic conversion of H2O2 into ·OH. Meanwhile, energy band edges of FeNv/CN favor the production of 1O2 upon interfacial redox chemistry, which is enhanced by the optimal separation/recombination dynamics of electron/hole pairs. Moreover, intrinsic peroxidase-like activity of FeNv/CN contributes to the depletion of reductant glutathione (GSH). Under the anchoring effect of cRGD, PEGylated FeNv/CN can be efficiently enriched in the tumorous region, which is ultrasonically activated for concurrent ROS accumulation and GSH consumption in cytosolic region. The deleterious redox dyshomeostasis not only eradicates primary tumor but also suppresses distant metastasis via antitumor immunity elicitation. Collectively, this study could inspire more facile designs of chalybeates for medical applications.


Hydrogen Peroxide , Hyperaldosteronism , Neoplasms , Nitriles , Humans , Reactive Oxygen Species , Oxidation-Reduction , Ultrasonography , Glutathione , Cell Line, Tumor
5.
Small ; : e2307404, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38054772

Mitochondria are core regulators of tumor cell homeostasis, and their damage has become an arresting therapeutic modality against cancer. Despite the development of many mitochondrial-targeted pharmaceutical agents, the exploration of more powerful and multifunctional medications is still underway. Herein, oxygen vacancy-rich BiO2-x wrapped with CaCO3 (named BiO2-x @CaCO3 /PEG, BCP) is developed for full-fledged attack on mitochondrial function. After endocytosis of BCP by tumor cells, the CaCO3 shell can be decomposed in the acidic lysosomal compartment, leading to immediate Ca2+ release and CO2 production in the cytoplasm. Near-infrared irradiation enhances the adsorption of CO2 onto BiO2-x defects, which enables highly efficient photocatalysis of CO2 -to-CO. Meanwhile, such BiO2-x nanosheets possess catalase-, peroxidase- and oxidase-like catalytic activities under acidic pH conditions, allowing hypoxia relief and the accumulation of diverse reactive oxygen species (ROS) in the tumor microenvironment. Ca2+ overload-induced ion dyshomeostasis, CO-mediated respiratory chain poisoning, ROS-triggered oxidative stress aggravation, and cytosolic hyperoxia can cause severe mitochondrial disorders, which further lead to type I cell death in carcinoma. Not only does BCP cause irreversible apoptosis, but immunogenic cell death is simultaneously triggered to activate antitumor immunity for metastasis inhibition. Collectively, this platform promises high benefits in malignant tumor therapy and may expand the medical applications of bismuth-based nanoagents.

6.
Biomaterials ; 302: 122340, 2023 11.
Article En | MEDLINE | ID: mdl-37774552

Ion homeostasis distortion through exogenous overload or underload of intracellular ion species has become an arresting therapeutic approach against malignant tumor. Nevertheless, treatment outcomes of such ion interference are always compromised by the intrinsic ion homeostasis maintenance systems in cancer cells. Herein, an ion homeostasis perturbator (CTC) is facilely designed by co-encapsulation of carvacrol (CAR) and meso-tetra-(4-carboxyphenyl)porphine (TCPP) into pH-sensitive nano-CaCO3, aiming to disrupt the self-defense mechanism during the process of ion imbalance. Upon the endocytosis of CTC into tumor cells, lysosomal acidity can render the decomposition of CaCO3, resulting in the instant Ca2+ overload and CO2 generation in cytoplasm. Simultaneously, CaCO3 disintegration triggers the release of CAR and TCPP, which are devoted to TRPM7 inhibition and sonosensitization, respectively. The malfunction of TRPM7 can impede the influx of Mg2+ and allow unrestricted influx of Ca2+ based on the antagonism relationship between Mg2+ and Ca2+, leading to an aggravated Ca2+/Mg2+ dyshomeostasis through ion channel deactivation. In another aspect, US-triggered cavitation can be significantly enhanced by the presence of inert CO2 microbubbles, further amplifying the generation of reactive oxygen species. Such oxidative damage-augmented Ca2+/Mg2+ interference therapy effectively impairs the mitochondrial function of tumor, which may provide useful insights in cancer therapy.


TRPM Cation Channels , Carbon Dioxide , Oxidative Stress , Reactive Oxygen Species/metabolism , Homeostasis , Calcium Carbonate , Calcium/metabolism
7.
Adv Healthc Mater ; 12(28): e2301453, 2023 11.
Article En | MEDLINE | ID: mdl-37531240

Intracellular redox homeostasis plays an important role in promoting tumor progression, development and even treatment resistance. To this end, redox balance impairment may become a prospective therapeutic target of cancer. Herein, a manganese-based homeostasis modulator (MHS) is developed for inducing severe reactive oxygen species accumulation and glutathione (GSH) deprivation, where such redox dyshomeostasis brings about dramatic ferroptosis/apoptosis. Tumor-specific degradation of manganese oxide nanocarriers contributes to hypoxia alleviation and loaded cargo release, resulting in apoptosis by augmented sonodynamic therapy and chemodynamic therapy. On the other hand, regional oxygenation significantly downregulates the expression of activating transcription factor 4, which can synergize with the released sulfasalazine to inhibit the downstream cystine antiporter xCT. Biosynthesis of GSH is sufficiently interrupted by the xCT suppression, leading to the reduction of glutathione peroxidase 4 (GPx4) level. The resultant excessive lipid peroxides promote intense ferroptosis to motivate cell death. On this basis, splendid treatment outcome by MHS is substantiated both in vitro and in vivo, thanks to the synergy of antitumor immunity elicitation. Taken together, this paradigm provides an insightful strategy to evoke drastic ferroptosis/apoptosis toward therapeutics and may also expand the eligibility of manganese-derived nanoagents for medical applications.


Ferroptosis , Neoplasms , Humans , Manganese , Apoptosis , Oxidative Stress , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Homeostasis
8.
Mikrochim Acta ; 190(6): 228, 2023 05 19.
Article En | MEDLINE | ID: mdl-37204518

Despite black phosphorous (BP) QDs possess the merits of size-tunable band-gap, high electron mobility, and intrinsic defects, the spontaneous agglomeration and rapid oxidation of BP QDs in aqueous solution caused low electrochemiluminescence (ECL) efficiency and unstable ECL signal, which confined its further application of biological analysis. Herein, polyethylene glycol-functionalized BP QDs (PEG@BP QDs) were prepared showing an efficient and stable ECL response, which is attributed to the fact that PEG as protectant not only effectively prevented the spontaneous agglomeration, but also restrained the rapid oxidation of BP QDs in aqueous solution. As proof-of-concept, PEG@BP QDs were used as an efficient ECL emitter to combine with palindrome amplification-induced DNA walker to construct a sensitive ECL aptasensing platform for detecting cancer marker mucin 1 (MUC1). Interestingly, with the aid of positively charged thiolated PEG, the reaction rate of DNA walker on the electrode interface was clearly increased for the recovery of the ECL signal. The ECL aptasensor provides sensitive determination with the detection limit of 16.5 fg/mL. The proposed strategy paves a path for the development of efficient and stable ECL nanomaterials to construct biosensors for biosensing and clinical diagnosis.


Quantum Dots , Luminescent Measurements , Biomarkers, Tumor , Photometry , Water , DNA
9.
J Control Release ; 358: 219-231, 2023 06.
Article En | MEDLINE | ID: mdl-37084891

Pyroptosis is a highly inflammatory programmed cell death that activates inflammatory response, reverses immunosuppression and promotes systemic immune response for solid tumors treatment. However, the uncontrollable and imprecise process of pyroptosis stimulation leads to a scanty therapeutic effect. Here, we report a GSH/ROS dual response nanogel system (IMs) that can actively target the overexpressed mannose receptor (MR) of cancer cells, serve ultra-stable photothermal capacity of indocyanine green (ICG), induce cell pyroptosis and achieve enhanced tumor immune response. Photo-triggered IMs induce cytoplasmic Ca2+ introgression and activate caspase-3 through photo-activated ICG. The disconnect of SeSe bonds can break the oxidation and reduction balance of tumor cells, causing oxidative stress and synergistically enhancing caspase-3 cleavage, and regulating cell pyroptosis ultimately. Combined with anti-programmed death receptor 1 (anti-PD-1), the nanogel system not only effectivly suppress both primary tumor and distance tumor but also prolong the survival period of mice. This work introduces a strategy to optimize the photothermal performance of ICG and enhances tumor immune response mediated by triggering pyroptosis, which provides an impressive option for immune checkpoint blockade therapy.


Neoplasms , Pyroptosis , Mice , Animals , Caspase 3 , Nanogels , Immunotherapy , Indocyanine Green/chemistry , Cell Line, Tumor
10.
Small ; 19(24): e2206912, 2023 06.
Article En | MEDLINE | ID: mdl-36932931

Enzyme-instructed self-assembly of bioactive molecules into nanobundles inside cells is conceived to potentially disrupt plasma membrane and subcellular structure. Herein, an alkaline phosphatase (ALP)-activatable hybrid of ICG-CF4 KYp is facilely synthesized by conjugating photosensitizer indocyanine green (ICG) with CF4 KYp peptide via classical Michael addition reaction. ALP-induced dephosphorylation of ICG-CF4 KYp enables its transformation from small-molecule precursor into rigid nanofibrils, and such fibrillation in situ causes severe mechanical disruption of cytomembrane. Besides, ICG-mediated photosensitization causes additional oxidative damage of plasma membrane by lipid peroxidation. Hollow MnO2 nanospheres devote to deliver ICG-CF4 KYp into tumorous tissue through tumor-specific acidity/glutathione-triggered degradation of MnO2 , which is monitored by fluorescent probing and magnetic resonance imaging. The burst release of damage-associated molecular patterns and other tumor antigens during therapy effectively triggers immunogenetic cell death and improves immune stimulatory, as demonstrated by the promotion of dendritic cell maturation and CD8+ lymphocyte infiltration, as well as constraint of regulatory T cell population. Taken together, such cytomembrane injury strategy based on peptide fibrillation in situ holds high clinical promise for lesion-specific elimination of primary, abscopal, and metastatic tumors, which may enlighten more bioinspired nanoplatforms for anticancer theranostics.


Manganese Compounds , Photochemotherapy , Oxides , Photosensitizing Agents/chemistry , Indocyanine Green/chemistry , Coloring Agents/chemistry , Peptides , Alkaline Phosphatase , Cell Membrane/metabolism , Photochemotherapy/methods , Cell Line, Tumor
11.
Small ; 19(21): e2300244, 2023 05.
Article En | MEDLINE | ID: mdl-36843276

Energy band structure of inorganic nano-sonosensitizers is usually optimized by surface decoration with noble metals or metal oxide semiconductors, aiming to enhance interfacial charge transfer, augment spin-flip and promote radical generation. To avoid potential biohazards of metallic elements, herein, metal-free graphitic carbon nitride quantum dots (g-C3 N4 QDs) are anchored onto hollow mesoporous TiO2 nanostructure to formulate TiO2 @g-C3 N4 heterojunction. The direct Z-scheme charge transfer significantly improves the separation/recombination dynamics of electron/hole (e- /h+ ) pairs upon ultrasound (US) stimulation, which promotes the yield of singlet oxygen (1 O2 ) and hydroxyl radicals (·OH). The conjugated g-C3 N4 QDs with peroxidase-mimic activity further react with the elevated endogenous H2 O2 and aggravate oxidative stress. After loading prodrug romidepsin (RMD) in TiO2 @g-C3 N4 , stimulus-responsive drug delivery can be realized by US irradiation. The disulfide bridge of the released RMD tends to be reduced by glutathione (GSH) into a monocyclic dithiol, which arrests cell cycle in G2/M phase and evokes apoptosis through enhanced histone acetylation. Importantly, reactive oxygen species accumulation accompanied by GSH depletion is devoted to deleterious redox dyshomeostasis, leading to augmented systemic oncotherapy by eliciting antitumor immunity. Collectively, this paradigm provides useful insights in optimizing the performance of TiO2 -based nano-sonosensitizers for tackling critical diseases.


Oxides , Oxidation-Reduction , Ultrasonography , Acetylation
12.
Carbohydr Polym ; 301(Pt B): 120365, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36446487

Polycyclodextrin-based supramolecular nanoplatform crosslinked by stimuli-responsive moiety shows great promise in cancer therapy owing to its superior bio-stability and feasible modification of architectures. Here, the endogenous glutathione (GSH)-responsive polycyclodextrin supramolecular nanocages (PDOP NCs) are constructed by covalent crosslinking of multiple ß-cyclodextrin (ß-CD) molecules. The polycyclodextrin provide sites for conjugation of chemotherapeutic doxorubicin (DOX). Meanwhile, the PDOP NCs are stabilized by multiple interactions including host-guest interaction between DOX and ß-CD and hydrogen bonds between ß-CD units. The supramolecular crosslinked structure endowed the nanocage with high stability and drug loading capacity. Tons of GSH-sensitive disulfide linkages in PDOP NCs were broken at tumor cells, promoting tumor-specific DOX release. Besides, the redox equilibrium in tumor microenvironment could be disturbed due to GSH depletion, which further sensitized the DOX effects and alleviated drug resistance, facilitating inducing immunogenic cell death effect for enhanced chemotherapy, thereby achieving efficient tumor suppression and prolonged survival. Thus, the versatile polycyclodextrin-based supramolecular nanocage provides a novel and efficient drug delivery strategy for cancer treatment.


Drug Delivery Systems , Immunogenic Cell Death , Doxorubicin/pharmacology , Tumor Microenvironment , Glutathione
13.
Biomaterials ; 293: 121970, 2023 Feb.
Article En | MEDLINE | ID: mdl-36549040

Intracellular redox dyshomeostasis promoted by tumor microenvironment (TME) modulation has become an appealing therapeutic target for cancer management. Herein, a dual plasmonic Au/SF@Cu2-xS nanoreactor (abbreviation as ASC) is elaborately developed by covalent immobilization of sulfur defective Cu2-xS nanodots onto the surface of silk fibroin (SF)-capped Au nanoparticles. Tumor hypoxia can be effectively alleviated by ASC-mediated local oxygenation, owing to the newfound catalase-mimic activity of Cu2-xS. The semiconductor of Cu2-xS with narrow bandgap energy of 2.54 eV enables a more rapid dissociation of electron-hole (e-/h+) pair for a promoted US-triggered singlet oxygen (1O2) generation, in the presence of Au as electron scavenger. Moreover, Cu2-xS is devote to Fenton-like reaction to catalyze H2O2 into ·OH under mild acidity and simultaneously deplete glutathione to aggravate intracellular oxidative stress. In another aspect, Au nanoparticles with glucose oxidase-mimic activity consumes intrinsic glucose, which contributes to a higher degree of oxidative damage and energy exhaustion of cancer cells. Importantly, such tumor starvation and 1O2 yield can be enhanced by Cu2-xS-catalyzed O2 self-replenishment in H2O2-rich TME. ASC-initiated M1 macrophage activation and therapy-triggered immunogenetic cell death (ICD) favors the systematic tumor elimination by eliciting antitumor immunity. This study undoubtedly enriches the rational design of SF-based nanocatalysts for medical utilizations.


Fibroins , Metal Nanoparticles , Neoplasms , Humans , Gold , Hydrogen Peroxide , Oxidation-Reduction , Nanotechnology , Cell Line, Tumor , Tumor Microenvironment
14.
Adv Healthc Mater ; 11(21): e2201233, 2022 11.
Article En | MEDLINE | ID: mdl-36049144

Cancer immunotherapy is restricted to immune resistance caused by immunosuppressive tumor microenvironment. Pyroptosis involved in antitumor immunotherapy as a new schedule is prospective to reverse immunosuppression. Herein, acidic tumor microenvironment (TME)-evoked MRC nanoparticles (MRC NPs) co-delivering immune agonist RGX-104 and photosensitizer chlorine e6 (Ce6) are reported for pyroptosis-mediated immunotherapy. RGX-104 remodels TME by transcriptional activation of ApoE to regress myeloid-derived suppressor cells' (MDSCs) activity, which neatly creates foreshadowing for intensifying pyroptosis. Considering Ce6-triggered photodynamic therapy (PDT) can strengthen oxidative stress and organelles destruction to increase immunogenicity, immunomodulatory-photodynamic MRC nanodrugs will implement an aforementioned two-pronged strategy to enhance gasdermin E (GSDME)-dependent pyroptosis. RNA-seq analysis of MRC at the cellular level is introduced to first elucidate the intimate relationship between RGX-104 acting on LXR/ApoE axis and pyroptosis, where RGX-104 provides the prerequisite for pyroptosis participating in antitumor therapy. Briefly, MRC with favorable biocompatibility tackles the obstacle of hydrophobic drugs delivery, and becomes a powerful pyroptosis inducer to reinforce immune efficacy. MRC-elicited pyroptosis in combination with anti-PD-1 blockade therapy boosts immune response in solid tumors, successfully arresting invasive metastasis and extending survival based on remarkable antitumor immunity. MRC may initiate a new window for immuno-photo pyroptosis stimulators augmenting pyroptosis-based immunotherapy.


Nanoparticles , Photochemotherapy , Pyroptosis , Prospective Studies , Cell Line, Tumor , Immunotherapy , Photosensitizing Agents/chemistry , Tumor Microenvironment , Nanoparticles/chemistry , Immunity , Apolipoproteins E
15.
Small ; 18(38): e2203080, 2022 09.
Article En | MEDLINE | ID: mdl-35989099

The therapeutic exploration of nano-zirconia semiconductor largely remains untouched in the field of fundamental science to date. Here, a robust nano-sonosensitizer of ZrO2- x @Pt is strategically formulated by in situ growth of Pt nanocrystal onto the surface of oxygen-deficient ZrO2- x . Compared to 3.09 eV of nano-ZrO2- x , the bandgap of ZrO2- x @Pt Schottky junction is narrowed down to 2.74 eV. The band bending and bandgap narrowing enables an enhanced e- /h+ separation in the presence of aPt electron sink, which facilitates a high yield of singlet oxygen (1 O2 ) and hydroxyl radicals (·OH) under ultrasound (US) irradiation. Moreover, nanozyme Pt with catalase-mimic activity can promote 1 O2  generation by relieving the hypoxic tumor microenvironment. Upon further modification of 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH), US-stimulated local thermal shock can disintegrate AIPH to create cytotoxic alkyl radicals (• R). US-triggered reactive oxygen species generation and hyperthermia-induced alkyl radical production lead to severe and irreversible tumor cell death. Such combinatorial sonodynamic-thermodynamic therapy benefits the tumor eradication and metastasis inhibition at the animal level, with the aid of immunogenetic cell death and immune checkpoint blockade. Taken together, this proof-of-concept paradigm expands the medical use of nano-zirconia and provides useful insights for its therapeutic perspectives.


Neoplasms , Ultrasonic Therapy , Animals , Catalase/metabolism , Cell Line, Tumor , Immune Checkpoint Inhibitors , Neoplasms/therapy , Oxidative Stress , Oxygen , Platinum , Propane , Reactive Oxygen Species/metabolism , Singlet Oxygen , Thermodynamics , Tumor Microenvironment
16.
Adv Sci (Weinh) ; 9(26): e2203353, 2022 09.
Article En | MEDLINE | ID: mdl-35869614

Effective pyroptosis induction is a promising approach to potentiate cancer immunotherapy. However, the actual efficacy of the present pyroptosis inducers can be weakened by successive biological barriers. Here, a cascaded pH-activated supramolecular nanoprodrug (PDNP) with a stepwise size shrinkage property is developed as a pyroptosis inducer to boost antitumor immune response. PDNPs comprise multiple poly(ethylene glycol) (PEG) and doxorubicin (DOX) drug-polymer hybrid repeating blocks conjugated by ultra-pH-sensitive benzoic imine (bzi) and hydrazone (hyd) bonds. The PEG units endow its "stealth" property and ensure sufficient tumor accumulation. A sharp switch in particle size and detachment of PEG shielding can be triggered by the acidic extracellular pH to achieve deep intratumor penetration. Following endocytosis, second-stage size switching can be initiated by more acidic endolysosomes, and PDNPs disassociate into ultrasmall cargo to ensure accurate intracellular delivery. The cascaded pH activation of PDNPs can effectively elicit gasdermin E (GSDME)-mediated pyroptosis to enhance the immunological response. In combination with anti-PD-1 antibody, PDNPs can amplify tumor suppression and extend the survival of mice, which suggests a powerful immune adjuvant and pave the way for high-efficiency immune checkpoint blockade therapy.


Neoplasms , Prodrugs , Animals , Doxorubicin/chemistry , Doxorubicin/pharmacology , Mice , Polyethylene Glycols/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Pyroptosis
17.
ACS Nano ; 16(8): 12118-12133, 2022 08 23.
Article En | MEDLINE | ID: mdl-35904186

To date, the construction of heterogeneous interfaces between sonosensitizers and other semiconductors or noble metals has aroused increasing attention, owing to an enhanced interface charge transfer, augmented spin-flip, and attenuated activation energy of oxygen. Here, a smart therapeutic nanoplatform is constructed by surface immobilization of glucose oxidase (GOx) onto a TiO2@Pt Schottky junction. The sonodynamic therapy (SDT) and starvation therapy (ST) mediated by TiO2@Pt/GOx (TPG) promote systemic tumor suppression upon hypoxia alleviation in tumor microenvironment. The band gap of TiO2@Pt is outstandingly decreased to 2.9 eV, in contrast to that of pristine TiO2. The energy structure optimization enables a more rapid generation of singlet oxygen (1O2) and hydroxyl radicals (•OH) by TiO2@Pt under ultrasound irradiation, resulting from an enhanced separation of hole-electron pair for redox utilization. The tumorous reactive oxygen species (ROS) accumulation and GOx-mediated glucose depletion facilitate oxidative damage and energy exhaustion of cancer cells, both of which can be tremendously amplified by Pt-catalyzed oxygen self-supply. Importantly, the combinatorial therapy triggers intense immunogenetic cell death, which favors a follow-up suppression of distant tumor and metastasis by evoking antitumor immunity. Collectively, this proof-of-concept paradigm provides an insightful strategy for highly efficient SDT/ST, which possesses good clinical potential for tackling cancer.


Neoplasms , Ultrasonic Therapy , Humans , Platinum , Tumor Microenvironment , Glucose , Neoplasms/drug therapy , Neoplasms/pathology , Reactive Oxygen Species/metabolism , Glucose Oxidase/pharmacology , Glucose Oxidase/metabolism , Oxygen , Cell Line, Tumor
18.
Chem Soc Rev ; 51(12): 5136-5174, 2022 Jun 20.
Article En | MEDLINE | ID: mdl-35666131

Recent years have witnessed increasingly rapid advances in nanocarrier-based biomedicine aimed at improving treatment paradigms for cancer. Nanogels serve as multipurpose and constructed vectors formed via intramolecular cross-linking to generate drug delivery systems, which is attributed predominantly to their satisfactory biocompatibility, bio-responsiveness, high stability, and low toxicity. Recently, immunotherapy has experienced unprecedented growth and has become the preferred strategy for cancer treatment, and mainly involves the mobilisation of the immune system and an enhanced anti-tumour immunity of the tumour microenvironment. Despite the inspiring success, immunotherapeutic strategies are limited due to the low response rates and immune-related adverse events. Like other nanomedicines, nanogels are comparably limited by lower focal enrichment rates upon introduction into the organism via injection. Because nanogels are three-dimensional cross-linked aqueous materials that exhibit similar properties to natural tissues and are structurally stable, they can comfortably cope with shear forces and serum proteins in the bloodstream, and the longer circulation life increases the chance of nanogel accumulation in the tumour, conferring deep tumour penetration. The large specific surface area can reduce or eliminate off-target effects by introducing stimuli-responsive functional groups, allowing multiple physical and chemical modifications for specific purposes to improve targeting to specific immune cell subpopulations or immune organs, increasing the bioavailability of the drug, and conferring a low immune-related adverse events on nanogel therapies. The slow release upon reaching the tumour site facilitates long-term awakening of the host's immune system, ultimately achieving enhanced therapeutic effects. As an effective candidate for cancer immunotherapy, nanogel-based immunotherapy has been widely used. In this review, we mainly summarize the recent advances of nanogel-based immunotherapy to deliver immunomodulatory small molecule drugs, antibodies, genes and cytokines, to target antigen presenting cells, form cancer vaccines, and enable chimeric antigen receptor (CAR)-T cell therapy. Future challenges as well as expected and feasible prospects for clinical treatment are also highlighted.


Cancer Vaccines , Neoplasms , Drug Delivery Systems , Humans , Immunotherapy/methods , Nanogels , Neoplasms/drug therapy , Tumor Microenvironment
19.
Adv Mater ; 34(42): e2204034, 2022 Oct.
Article En | MEDLINE | ID: mdl-35728795

Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.


Biocompatible Materials , Neoplasms , Humans , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Immunotherapy/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy , Magnetic Resonance Imaging , Immunologic Factors , Immunity , Tumor Microenvironment
20.
Biomed Mater ; 17(5)2022 07 11.
Article En | MEDLINE | ID: mdl-35764078

Inveterbral disc degeneration is a significant musculoskeletal disease that brings huge burden of pain, disability, psychological and social consequences to the affected population worldwide with treatments that only alleviate the pain but does not address the underlying biological problems. For the past decades, tissue engineering of the disc has been investigated with annulus fibrosus (AF) been one of the complicated disc component to be engineered. With the limited source of annulus cells, bone marrow stromal cells (BMSCs) have been frequently investigated as a potental cell candidate to develop an AF-like tissue which often require a multi-disciplinary effort to achieve. The extracellular matrix of AF is largely make up of collagen and proteoglycan which is still unclear how these matrix proteins could influence the BMSCs towards constructing a AF-like tissue. In this study, we adopted a coiled hydrogel microfiber that resembles the micro-architecture of the native AF tissue to encapsulate BMSCs and incorporated collagen type 1 and hyaluronic acid which later demonstrated that the co-presence of hyaluronic acid and collagen could potentially regulated AF-associated biomarkers and protease expression which are critical for later development of an engineered AF tissue construct.


Intervertebral Disc Degeneration , Intervertebral Disc , Mesenchymal Stem Cells , Collagen/metabolism , Humans , Hyaluronic Acid , Mesenchymal Stem Cells/metabolism , Pain/metabolism , Tissue Engineering
...