Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 620(7972): 226-231, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37336486

RESUMEN

Uncoupling protein 1 (UCP1) conducts protons through the inner mitochondrial membrane to uncouple mitochondrial respiration from ATP production, thereby converting the electrochemical gradient of protons into heat1,2. The activity of UCP1 is activated by endogenous fatty acids and synthetic small molecules, such as 2,4-dinitrophenol (DNP), and is inhibited by purine nucleotides, such as ATP3-5. However, the mechanism by which UCP1 binds to these ligands remains unknown. Here we present the structures of human UCP1 in the nucleotide-free state, the DNP-bound state and the ATP-bound state. The structures show that the central cavity of UCP1 is open to the cytosolic side. DNP binds inside the cavity, making contact with transmembrane helix 2 (TM2) and TM6. ATP binds in the same cavity and induces conformational changes in TM2, together with the inward bending of TM1, TM4, TM5 and TM6 of UCP1, resulting in a more compact structure of UCP1. The binding site of ATP overlaps with that of DNP, suggesting that ATP competitively blocks the functional engagement of DNP, resulting in the inhibition of the proton-conducting activity of UCP1.


Asunto(s)
2,4-Dinitrofenol , Adenosina Trifosfato , Proteína Desacopladora 1 , Humanos , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Protones , Proteína Desacopladora 1/química , Proteína Desacopladora 1/metabolismo , Ácidos Grasos/metabolismo , 2,4-Dinitrofenol/química , 2,4-Dinitrofenol/metabolismo , Conformación Proteica , Membrana Celular/metabolismo , Citosol/metabolismo
2.
Nitric Oxide ; 134-135: 17-22, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36972843

RESUMEN

Soluble guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO). The binding of NO to the haem of sGC induces a large conformational change in the enzyme and activates its cyclase activity. However, whether NO binds to the proximal site or the distal site of haem in the fully activated state remains under debate. Here, we present cryo-EM maps of sGC in the NO-activated state at high resolutions, allowing the observation of the density of NO. These cryo-EM maps show the binding of NO to the distal site of haem in the NO-activated state.


Asunto(s)
Guanilato Ciclasa , Óxido Nítrico , Guanilil Ciclasa Soluble , Óxido Nítrico/metabolismo , Guanilato Ciclasa/metabolismo , Hemo/química , GMP Cíclico/metabolismo
3.
Biochem Biophys Res Commun ; 621: 168-175, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-35841763

RESUMEN

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a signaling molecule that can induce calcium release from intracellular acidic stores. However, proteins that bind to NAADP are understudied. Here, we identify aspartate dehydrogenase domain-containing protein (ASPDH) as an NAADP-binding protein through biochemical purification from pig livers. Isothermal titration calorimetry (ITC) experiment using the recombinantly expressed protein shows a 1:1 binding stoichiometry and a Kd of 455 nM between NAADP and mouse ASPDH. In contrast, recombinantly expressed Jupiter microtubule-associated homolog 2 (JPT2) and SM-like protein LSM12, two proteins previously identified as NAADP-receptors, show no binding in ITC experiments.


Asunto(s)
Señalización del Calcio , Proteínas Portadoras , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Carboxiliasas/metabolismo , Proteínas Portadoras/metabolismo , Ratones , NADP/análogos & derivados , NADP/metabolismo , Porcinos
4.
Nat Commun ; 13(1): 2639, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550517

RESUMEN

NALCN channel mediates sodium leak currents and is important for maintaining proper resting membrane potential. NALCN and FAM155A form the core complex of the channel, the activity of which essentially depends on the presence of both UNC79 and UNC80, two auxiliary proteins. NALCN, FAM155A, UNC79, and UNC80 co-assemble into a large hetero-tetrameric channel complex. Genetic mutations of NALCN channel components lead to neurodevelopmental diseases. However, the structure and mechanism of the intact channel complex remain elusive. Here, we present the cryo-EM structure of the mammalian NALCN-FAM155A-UNC79-UNC80 quaternary complex. The structure shows that UNC79-UNC80 form a large piler-shaped heterodimer which was tethered to the intracellular side of the NALCN channel through tripartite interactions with the cytoplasmic loops of NALCN. Two interactions are essential for proper cell surface localization of NALCN. The other interaction relieves the self-inhibition of NALCN by pulling the auto-inhibitory CTD Interacting Helix (CIH) out of its binding site. Our work defines the structural mechanism of NALCN modulation by UNC79 and UNC80.


Asunto(s)
Canales Iónicos , Proteínas de la Membrana , Animales , Canales Iónicos/metabolismo , Mamíferos/metabolismo , Potenciales de la Membrana , Proteínas de la Membrana/metabolismo , Mutación , Dominios Proteicos
5.
Neuron ; 110(6): 1023-1035.e5, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35051376

RESUMEN

TRPC3 and TRPC6 channels are calcium-permeable non-selective cation channels that are involved in many physiological processes. The gain-of-function (GOF) mutations of TRPC6 lead to familial focal segmental glomerulosclerosis (FSGS) in humans, but their pathogenic mechanism remains elusive. Here, we report the cryo-EM structures of human TRPC3 in both high-calcium and low-calcium conditions. Based on these structures and accompanying electrophysiological studies, we identified both inhibitory and activating calcium-binding sites in TRPC3 that couple intracellular calcium concentrations to the basal channel activity. These calcium sensors are also structurally and functionally conserved in TRPC6. We uncovered that the GOF mutations of TRPC6 activate the channel by allosterically abolishing the inhibitory effects of intracellular calcium. Furthermore, structures of human TRPC6 in complex with two chemically distinct inhibitors bound at different ligand-binding pockets reveal different conformations of the transmembrane domain, providing templates for further structure-based drug design targeting TRPC6-related diseases such as FSGS.


Asunto(s)
Calcio , Glomeruloesclerosis Focal y Segmentaria , Canales Catiónicos TRPC , Canal Catiónico TRPC6 , Sitios de Unión , Calcio/metabolismo , Canales de Calcio/metabolismo , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo
6.
Nat Commun ; 12(1): 5492, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535643

RESUMEN

Soluble guanylate cyclase (sGC) is the receptor for nitric oxide (NO) in human. It is an important validated drug target for cardiovascular diseases. sGC can be pharmacologically activated by stimulators and activators. However, the detailed structural mechanisms, through which sGC is recognized and positively modulated by these drugs at high spacial resolution, are poorly understood. Here, we present cryo-electron microscopy structures of human sGC in complex with NO and sGC stimulators, YC-1 and riociguat, and also in complex with the activator cinaciguat. These structures uncover the molecular details of how stimulators interact with residues from both ß H-NOX and CC domains, to stabilize sGC in the extended active conformation. In contrast, cinaciguat occupies the haem pocket in the ß H-NOX domain and sGC shows both inactive and active conformations. These structures suggest a converged mechanism of sGC activation by pharmacological compounds.


Asunto(s)
Activadores de Enzimas/farmacología , Guanilil Ciclasa Soluble/metabolismo , Animales , Benzoatos/química , Benzoatos/farmacología , Sitios de Unión , Línea Celular , Microscopía por Crioelectrón , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/química , Humanos , Indazoles/química , Indazoles/farmacología , Modelos Moleculares , Óxido Nítrico/farmacología , Multimerización de Proteína , Pirazoles/química , Pirazoles/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Guanilil Ciclasa Soluble/química , Guanilil Ciclasa Soluble/ultraestructura
7.
Cell Metab ; 33(8): 1655-1670.e8, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34015269

RESUMEN

How amphipathic phospholipids are shuttled between the membrane bilayer remains an essential but elusive process, particularly at the endoplasmic reticulum (ER). One prominent phospholipid shuttling process concerns the biogenesis of APOB-containing lipoproteins within the ER lumen, which may require bulk trans-bilayer movement of phospholipids from the cytoplasmic leaflet of the ER bilayer. Here, we show that TMEM41B, present in the lipoprotein export machinery, encodes a previously conceptualized ER lipid scramblase mediating trans-bilayer shuttling of bulk phospholipids. Loss of hepatic TMEM41B eliminates plasma lipids, due to complete absence of mature lipoproteins within the ER, but paradoxically also activates lipid production. Mechanistically, scramblase deficiency triggers unique ER morphological changes and unsuppressed activation of SREBPs, which potently promotes lipid synthesis despite stalled secretion. Together, this response induces full-blown nonalcoholic hepatosteatosis in the TMEM41B-deficient mice within weeks. Collectively, our data uncovered a fundamental mechanism safe-guarding ER function and integrity, dysfunction of which disrupts lipid homeostasis.


Asunto(s)
Retículo Endoplásmico , Fosfolípidos , Animales , Retículo Endoplásmico/metabolismo , Homeostasis , Lipogénesis , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Fosfolípidos/metabolismo
8.
Elife ; 102021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33683200

RESUMEN

TRPC5 channel is a nonselective cation channel that participates in diverse physiological processes. TRPC5 inhibitors show promise in the treatment of anxiety disorder, depression, and kidney disease. However, the binding sites and inhibitory mechanism of TRPC5 inhibitors remain elusive. Here, we present the cryo-EM structures of human TRPC5 in complex with two distinct inhibitors, namely clemizole and HC-070, to the resolution of 2.7 Å. The structures reveal that clemizole binds inside the voltage sensor-like domain of each subunit. In contrast, HC-070 is wedged between adjacent subunits and replaces the glycerol group of a putative diacylglycerol molecule near the extracellular side. Moreover, we found mutations in the inhibitor binding pockets altered the potency of inhibitors. These structures suggest that both clemizole and HC-070 exert the inhibitory functions by stabilizing the ion channel in a nonconductive closed state. These results pave the way for further design and optimization of inhibitors targeting human TRPC5.


Asunto(s)
Bencimidazoles/química , Compuestos Heterocíclicos de 4 o más Anillos/química , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/química , Bencimidazoles/metabolismo , Sitios de Unión , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Humanos , Modelos Moleculares , Canales Catiónicos TRPC/metabolismo
9.
Nat Commun ; 11(1): 6199, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273469

RESUMEN

Resting membrane potential determines the excitability of the cell and is essential for the cellular electrical activities. The NALCN channel mediates sodium leak currents, which positively adjust resting membrane potential towards depolarization. The NALCN channel is involved in several neurological processes and has been implicated in a spectrum of neurodevelopmental diseases. Here, we report the cryo-EM structure of rat NALCN and mouse FAM155A complex to 2.7 Å resolution. The structure reveals detailed interactions between NALCN and the extracellular cysteine-rich domain of FAM155A. We find that the non-canonical architecture of NALCN selectivity filter dictates its sodium selectivity and calcium block, and that the asymmetric arrangement of two functional voltage sensors confers the modulation by membrane potential. Moreover, mutations associated with human diseases map to the domain-domain interfaces or the pore domain of NALCN, intuitively suggesting their pathological mechanisms.


Asunto(s)
Canales de Calcio/química , Canales Iónicos/química , Proteínas de la Membrana/química , Sodio/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Calcio/metabolismo , Células HEK293 , Humanos , Canales Iónicos/metabolismo , Potenciales de la Membrana , Proteínas de la Membrana/metabolismo , Ratones , Modelos Moleculares , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas
10.
Nat Commun ; 11(1): 2478, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424158

RESUMEN

Sterol O-acyltransferase 1 (SOAT1) is an endoplasmic reticulum (ER) resident, multi-transmembrane enzyme that belongs to the membrane-bound O-acyltransferase (MBOAT) family. It catalyzes the esterification of cholesterol to generate cholesteryl esters for cholesterol storage. SOAT1 is a target to treat several human diseases. However, its structure and mechanism remain elusive since its discovery. Here, we report the structure of human SOAT1 (hSOAT1) determined by cryo-EM. hSOAT1 is a tetramer consisted of a dimer of dimer. The structure of hSOAT1 dimer at 3.5 Å resolution reveals that a small molecule inhibitor CI-976 binds inside the catalytic chamber and blocks the accessibility of the active site residues H460, N421 and W420. Our results pave the way for future mechanistic study and rational drug design targeting hSOAT1 and other mammalian MBOAT family members.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Esterol O-Aciltransferasa/antagonistas & inhibidores , Esterol O-Aciltransferasa/química , Sitios de Unión , Biocatálisis , Células HEK293 , Humanos , Ligandos , Multimerización de Proteína , Esterol O-Aciltransferasa/ultraestructura , Relación Estructura-Actividad , Especificidad por Sustrato/efectos de los fármacos
11.
Nature ; 574(7777): 206-210, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31514202

RESUMEN

Soluble guanylate cyclase (sGC) is the primary sensor of nitric oxide. It has a central role in nitric oxide signalling and has been implicated in many essential physiological processes and disease conditions. The binding of nitric oxide boosts the enzymatic activity of sGC. However, the mechanism by which nitric oxide activates the enzyme is unclear. Here we report the cryo-electron microscopy structures of the human sGCα1ß1 heterodimer in different functional states. These structures revealed that the transducer module bridges the nitric oxide sensor module and the catalytic module. Binding of nitric oxide to the ß1 haem-nitric oxide and oxygen binding (H-NOX) domain triggers the structural rearrangement of the sensor module and a conformational switch of the transducer module from bending to straightening. The resulting movement of the N termini of the catalytic domains drives structural changes within the catalytic module, which in turn boost the enzymatic activity of sGC.


Asunto(s)
Microscopía por Crioelectrón , Guanilil Ciclasa Soluble/metabolismo , Guanilil Ciclasa Soluble/ultraestructura , Animales , Disulfuros/química , Disulfuros/metabolismo , Drosophila melanogaster , Activación Enzimática , Células HEK293 , Hemo/metabolismo , Humanos , Hidrazinas/farmacología , Ratones , Modelos Moleculares , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Dominios Proteicos , Multimerización de Proteína , Guanilil Ciclasa Soluble/química , Guanilil Ciclasa Soluble/genética
12.
Cell Rep ; 27(6): 1848-1857.e4, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067468

RESUMEN

Repaglinide (RPG) is a short-acting insulin secretagogue widely prescribed for the treatment of type 2 diabetes. It boosts insulin secretion by inhibiting the pancreatic ATP-sensitive potassium channel (KATP). However, the mechanisms by which RPG binds to the KATP channel are poorly understood. Here, we describe two cryo-EM structures: the pancreatic KATP channel in complex with inhibitory RPG and adenosine-5'-(γ-thio)-triphosphate (ATPγS) at 3.3 Å and a medium-resolution structure of a RPG-bound mini SUR1 protein in which the N terminus of the inward-rectifying potassium channel 6.1 (Kir6.1) is fused to the ABC transporter module of the sulfonylurea receptor 1 (SUR1). These structures reveal the binding site of RPG in the SUR1 subunit. Furthermore, the high-resolution structure reveals the complex architecture of the ATP binding site, which is formed by both Kir6.2 and SUR1 subunits, and the domain-domain interaction interfaces.


Asunto(s)
Carbamatos/química , Carbamatos/metabolismo , Páncreas/metabolismo , Piperidinas/química , Piperidinas/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Mapeo de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo , Receptores de Sulfonilureas/ultraestructura
13.
Nat Struct Mol Biol ; 25(9): 850-858, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30190597

RESUMEN

Mechanosensitive ion channels convert mechanical stimuli into a flow of ions. These channels are widely distributed from bacteria to higher plants and humans, and are involved in many crucial physiological processes. Here we show that two members of the OSCA protein family in Arabidopsis thaliana, namely AtOSCA1.1 and AtOSCA3.1, belong to a new class of mechanosensitive ion channels. We solve the structure of the AtOSCA1.1 channel at 3.5-Å resolution and AtOSCA3.1 at 4.8-Å resolution by cryo-electron microscopy. OSCA channels are symmetric dimers that are mediated by cytosolic inter-subunit interactions. Strikingly, they have structural similarity to the mammalian TMEM16 family proteins. Our structural analysis accompanied with electrophysiological studies identifies the ion permeation pathway within each subunit and suggests a conformational change model for activation.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiología , Canales Iónicos/química , Canales Iónicos/fisiología , Mecanotransducción Celular , Animales , Microscopía por Crioelectrón , Citoplasma/química , Dimerización , Humanos
14.
Protein Cell ; 9(6): 553-567, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29594720

RESUMEN

ATP-sensitive potassium channels (KATP) are energy sensors on the plasma membrane. By sensing the intracellular ADP/ATP ratio of ß-cells, pancreatic KATP channels control insulin release and regulate metabolism at the whole body level. They are implicated in many metabolic disorders and diseases and are therefore important drug targets. Here, we present three structures of pancreatic KATP channels solved by cryo-electron microscopy (cryo-EM), at resolutions ranging from 4.1 to 4.5 Å. These structures depict the binding site of the antidiabetic drug glibenclamide, indicate how Kir6.2 (inward-rectifying potassium channel 6.2) N-terminus participates in the coupling between the peripheral SUR1 (sulfonylurea receptor 1) subunit and the central Kir6.2 channel, reveal the binding mode of activating nucleotides, and suggest the mechanism of how Mg-ADP binding on nucleotide binding domains (NBDs) drives a conformational change of the SUR1 subunit.


Asunto(s)
Páncreas/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de Sulfonilureas/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Microscopía por Crioelectrón , Ligandos , Mesocricetus , Ratones , Modelos Moleculares , Nucleótidos/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Células Sf9 , Spodoptera , Receptores de Sulfonilureas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA