Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Phys Med Rehabil ; 99(5): 424-429, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31851009

RESUMEN

OBJECTIVES: The aim of the study was to explore motivators for and barriers to exercise rehabilitation in hemodialysis patients and the barriers perceived by the hemodialysis center staff. DESIGN: A cross-sectional study was performed in five hemodialysis centers using patient questionnaires designed for this study to evaluate the motivators for and barriers to exercise rehabilitation. Questionnaires were not yet validated. RESULTS: Of the 471 recruited patients, 63.3% were willing to participant in exercise rehabilitation. The greatest motivators included improving quality of life (98.0%) and wanting to be healthier (98.0%). Perceived barriers included discomfort (59.0%), concerns regarding safety (36.7%), and disinterest (27.0%). Among these, unwillingness, disinterest, and having peripheral arterial disease were independent risk factors of lack of participation in exercise rehabilitation. The most common perceived barriers among the 90 employees that participated were lack of professional guidance and advice from rehabilitation therapists (93.1%), lack of exercise rehabilitation knowledge (86.2%), and lack of special exercise equipment (86.2%). CONCLUSIONS: Most patients were willing to exercise to improve their health and quality of life. Barriers to exercise rehabilitation included patient and staff factors. It is essential to establish a rehabilitation team within dialysis centers, including general staff and rehabilitation therapists. These centers require improved rehabilitation policies and access to specialized rehabilitation equipment.


Asunto(s)
Actitud Frente a la Salud , Terapia por Ejercicio/psicología , Diálisis Renal , Adulto , Anciano , Anciano de 80 o más Años , Instituciones de Atención Ambulatoria , China , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Motivación , Encuestas y Cuestionarios
2.
Cardiovasc Res ; 102(3): 448-59, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24604622

RESUMEN

AIMS: Endothelial dysfunction is an initial and vascular smooth muscle cell (VSMC) apoptosis, a later step of atherosclerosis. Hypothyroidism accelerates atherosclerosis. However, the early events responsible for this pro-atherosclerotic effect are unclear. METHODS AND RESULTS: Rats were resistant to induction of atherosclerosis by high cholesterol diet alone, but became susceptible in hypothyroid state achieved by administration of propylthiouracil (PTU) for 6 weeks. VSMC dysfunction and apoptosis were obvious within 1 week after PTU treatment, without signs of endothelial dysfunction. This early VSMC damage was caused by hypothyroidism but not the high cholesterol diet. In ApoE knockout mice, PTU-induced hypothyroidism triggered early VSMC apoptosis, increased oxidative stress, and accelerated atherosclerosis development. Thyroid hormone supplementation (T4, 10, or 50 µg/kg) prevented atherogenic phenotypes in hypothyroid rats and mice. In rats, thyroidectomy caused severe hypothyroidism 5 days after operation, which also led to rapid VSMC dysfunction and apoptosis. In vitro studies did not show a direct toxic effect of PTU on VSMCs. In contrast, thyroid hormone (T3, 0.75 µg/L plus T4, 50 nmol/L) exerted a direct protection against VSMC apoptosis, which was reduced by knockdown of TRα1, rather than TRß1 and TRß2 receptors. TRα1-mediated inhibition of apoptotic signalling of JNKs and caspase-3 contributed to the anti-apoptotic action of thyroid hormone. CONCLUSION: These findings provide an in vivo example for VSMC apoptosis as an early trigger of hypothyroidism-associated atherosclerosis, and reveal activation of TRα1 receptors to prevent VSMC apoptosis as a therapeutic strategy in this disease.


Asunto(s)
Apoptosis , Aterosclerosis/etiología , Hipotiroidismo/complicaciones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Animales , Apolipoproteínas E/fisiología , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Propiltiouracilo/toxicidad , Ratas , Ratas Sprague-Dawley , Receptores alfa de Hormona Tiroidea/fisiología , Receptores beta de Hormona Tiroidea/fisiología , Hormonas Tiroideas/deficiencia
3.
Exp Biol Med (Maywood) ; 238(1): 12-22, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23479759

RESUMEN

Decompression sickness (DCS) is a major concern in diving and space walk. Hyperbaric oxygen (HBO) preconditioning has been proved to enhance tolerance to DCS via nitric oxide. Heat-shock protein (HSP) 70 was also found to have protective effects against DCS. We hypothesized that the beneficial effects of HBO preconditioning on DCS was related to levels of elevated HSP70. HSPs (70, 27 and 90) expressed in tissues of spinal cord and lung in rats was detected at different time points following HBO exposure by Western blot. HSP27 and HSP90 showed a slight but not significant increase after HBO. HSP70 increased and reached highest at 18 h following exposure before decreasing. Then rats were exposed to HBO and subjected to simulated air dive and rapid decompression to induce DCS 18 h after HBO. The severity of DCS, along with levels of HSP70 expression, as well as the extent of oxidative and apoptotic parameters in the lung and spinal cord were compared among different groups of rats pretreated with HBO, HBO plus NG-nitro-l-arginine-methyl ester (l-NAME), HBO plus quercetin or normobaric air. HBO preconditioning significantly reduced the morbidity of DCS (from 66.7% to 36.7%), reduced levels of oxidation (malondialdehyde, 8-hydroxyguanine and hydrogen peroxide) and apoptosis (caspase-3 and -9 activities and the number of apoptotic cells). l-NAME or quercetin eliminated most of the beneficial effects of HBO on DCS, and counteracted the stimulation of HSP70 by HBO. Bubbles in pulmonary artery were detected using ultrasound imaging to observe the possible effect of HBO preconditioning on DCS bubble formation. The amounts of bubbles in rats pretreated with HBO or air showed no difference. These results suggest that HSP70 was involved in the beneficial effects of HBO on DCS in rats, suspected be by the antioxidation and antiapoptosis effects.


Asunto(s)
Enfermedad de Descompresión/patología , Enfermedad de Descompresión/fisiopatología , Proteínas HSP70 de Choque Térmico/metabolismo , Oxigenoterapia Hiperbárica , Animales , Western Blotting , Perfilación de la Expresión Génica , Pulmón/química , Pulmón/patología , Masculino , Ratas , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad , Médula Espinal/química , Médula Espinal/patología
4.
Chin Med J (Engl) ; 125(9): 1633-7, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22800834

RESUMEN

BACKGROUND: Molecular hydrogen, as a novel antioxidant, has been proven effective in treating many diseases. This study aimed to evaluate the therapeutic effects of hydrogen saturated saline in treatment of a rat model of diabetes mellitus and a rat model of insulin resistant. METHODS: A rat diabetes mellitus model was established by feeding a high fat/high carbohydrate diet followed by injection of a small dose of streptozotocin, and an insulin resistant model was induced with a high glucose and high fat diet. Hydrogen saturated saline was administered to rats with both models conditions on a daily basis for eight weeks. A pioglitazone-treated group and normal saline-treated group served as positive and negative controls. The general condition, body weight, blood glucose, blood lipids, and serum insulin levels of rats were examined at the 8th week after treatment. The oxidative stress indices, including serum superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) were also evaluated after eight weeks of treatment using the commercial kits. RESULTS: Hydrogen saturated saline showed great efficiency in improving the insulin sensitivity and lowering blood glucose and lipids. Meanwhile, the therapeutic effects of hydrogen saturated saline were superior to those of pioglitazone. Hydrogen saturated saline markedly attenuated the MDA level and elevated the levels of antioxidants SOD and GSH. CONCLUSION: Hydrogen saturated saline may improve the insulin resistance and alleviate the symptoms of diabetes mellitus by reducing the oxidative stress and enhancing the anti-oxidant system.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Hidrógeno/uso terapéutico , Hipoglucemiantes/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Cloruro de Sodio/química , Animales , Resistencia a la Insulina , Pioglitazona , Ratas , Tiazolidinedionas/uso terapéutico
5.
Undersea Hyperb Med ; 38(5): 335-43, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22013760

RESUMEN

The spinal cord is one of the most commonly affected sites in decompression sickness (DCS). Alternative methods have long been sought to protect against DCS spinal cord dysfunction, especially when hyperbaric treatment is unavailable. Use of perfluorocarbon (PFC) emulsion with or without oxygen breathing has shown survival benefits in DCS animal models. The effectiveness of intravenous PFC emulsion with oxygen breathing on spinal cord function was studied. Somatosensory-evoked potentials (SSEPs) and histologic examination were chosen to serve as measures. After fast decompression (203 kPa/minute) from 709 kPa (for 60 minutes), male Sprague-Dawley rats randomly received: 1) air and saline; 2) oxygen (O2) and saline; 3) O2 and PFC emulsion. The incidence and average number of abnormal SSEP waves in survival animals that received O2 and PFC emulsion were significantly reduced (P < 0.05). Foci of demyelination, necrosis and round non-staining defects in white matter regions of the spinal cord could be found in severe DCS rats. We concluded that administration of PFC emulsion combined with oxygen breathing was beneficial for DCS spinal conductive dysfunction in rats.


Asunto(s)
Enfermedad de Descompresión/complicaciones , Fluorocarburos/administración & dosificación , Terapia por Inhalación de Oxígeno/métodos , Traumatismos de la Médula Espinal/terapia , Animales , Terapia Combinada/métodos , Enfermedades Desmielinizantes/patología , Emulsiones , Potenciales Evocados Somatosensoriales/fisiología , Infusiones Intravenosas/métodos , Leucoencefalopatías/patología , Masculino , Necrosis , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/etiología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
6.
Clin Exp Pharmacol Physiol ; 38(10): 675-82, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21711378

RESUMEN

1. Heme oxygenase 1 (HO-1) has been shown to play a pivotal role in the maintenance of cellular homeostasis when the liver undergoes sublethal stress, such as ischaemia-reperfusion (I/R) injury. In the present study, we investigated the protective role of HO-1 in hyperbaric oxygen (HBO) preconditioning against liver injury after I/R. 2. A total hepatic ischaemia (30 min) and reperfusion (60 min) injury model in rats was used in the present study. Preconditioned groups were exposed to HBO 24 h prior to the induction of I/R injury. Other groups were injected with zinc protoporphyrin IX (ZnPP) intraperitoneally 1 h before I/R to inhibit HO-1 activity. At the end of the reperfusion period, blood and liver samples were collected for the analysis of liver injury markers, morphological changes, and HO-1 expression and activity in the liver. 3. In untreated rats, I/R induced an increase in hepatic injury markers, such as plasma transaminases, inflammatory cytokines (tumour necrosis factor-α and interleukin-1ß), and tissue malondialdehyde. However, HBO preconditioning attenuated the I/R-induced increases in these hepatic injury markers, and prevented both the necrosis and apoptosis of hepatocytes induced by I/R injury. Furthermore, HBO preconditioning significantly increased HO-1 mRNA and protein levels in the liver. In rats in which HO-1 activity had been inhibited with ZnPP pretreatment, the protective effects of HBO preconditioning against I/R injury were abolished. 4. In conclusion, HBO preconditioning can protect the liver against I/R injury and it appears that this effect might be mediated by the induction of HO-1.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Oxigenoterapia Hiperbárica/métodos , Precondicionamiento Isquémico/métodos , Hepatopatías/metabolismo , Hepatopatías/prevención & control , Protoporfirinas/farmacología , Daño por Reperfusión/prevención & control , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1/antagonistas & inhibidores , Humanos , Oxigenoterapia Hiperbárica/estadística & datos numéricos , Interleucina-1beta/sangre , Hepatopatías/patología , Masculino , Malondialdehído/metabolismo , Necrosis/prevención & control , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transaminasas/sangre , Factor de Necrosis Tumoral alfa/sangre
7.
Aviat Space Environ Med ; 82(6): 604-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21702310

RESUMEN

INTRODUCTION: Hydrogen (H2) has been reported to be effective in the treatment of oxidative injury, which plays an important role in the process of decompression sickness (DCS). This study was designed to test whether H2-rich saline (saline saturated with molecular hydrogen) protected rats against DCS. METHODS: Models of DCS were induced in male Sprague-Dawley rats weighing 300-310 g. H2-rich (0.86 mmol x L(-1)) saline was administered intraperitoneally (10 ml x kg(-1)) at 24 h, 12 h, immediately before compression, and right after fast decompression. RESULTS: H2-rich saline significantly decreased the incidence of DCS from 67.57 to 35.14% and partially counteracted the increases in the total concentration of protein in the bronchoalveolar lavage from 0.33 +/- 0.05 to 0.14 +/- 0.01 mg x ml(-1) (mean +/- SD; P < 0.05), myeloperoxidase activity from 0.86 +/- 0.16 to 0.44 +/- 0.13 U/g, levels of malondialdehyde (MDA) from 0.80 +/- 0.10 to 0.48 +/- 0.05 nmol x mg(-1), 8-hydroxydeoxyguanosine from 253.7 +/- 9.3 to 191.2 +/- 4.8 pg x mg(-1) in the lungs, and MDA level from 1.77 +/- 0.20 to 0.87 +/- 0.23 nmol x mg(-1) in the spinal cord in rat DCS models. The histopathology results also showed that H2-rich saline ameliorated DCS injuries. DISCUSSION: It is concluded that H2-rich saline may have a protective effect against DCS, possibly due to its antioxidant action.


Asunto(s)
Enfermedad de Descompresión/prevención & control , Hidrógeno/farmacología , Cloruro de Sodio/farmacología , 8-Hidroxi-2'-Desoxicoguanosina , Análisis de Varianza , Animales , Líquido del Lavado Bronquioalveolar/química , Corteza Cerebral/metabolismo , Distribución de Chi-Cuadrado , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Hidrógeno/administración & dosificación , Inyecciones Intraperitoneales , Pulmón/metabolismo , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo , Peroxidasa/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Cloruro de Sodio/administración & dosificación , Médula Espinal/metabolismo
9.
Undersea Hyperb Med ; 37(3): 173-80, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20568547

RESUMEN

Divers are at risk of decompression sickness (DCS) when the ambient pressure decrease exceeds a critical threshold. Hyperbaric oxygen (HBO2) preconditioning has been used to prevent various injuries, but the protective effect on DCS has not been well explored. To investigate the prophylactic effect of HBO2 on DCS, rats were pretreated with HBO2 (250 kPa-60 minutes) (all the pressures described here are absolute pressure) for 18 hours before a simulated air dive (700 kPa-100 minutes) with fast decompression to the surface at the rate of 200 kPa/min (n=33). During the following 30 minutes, the rats walked in a 3 m/minute rotating cage and were monitored for signs of DCS. The control rats were pretreated with normobaric air (n=30), normoxic hyperbaric nitrox (250 kPa, 8.4% O2) (n=13), or N(G)-nitro-L-arginine methyl ester (L-NAME) 30 minutes before HBO2 exposure (n=13). Nitric oxide (NO) levels were recorded immediately and 18 hours after HBO2 exposure in the brain and spinal cord. The incidence of DCS in rats pretreated with HBO2 was 30.3%, which was significantly lower than those treated with normobaric air (63.3%) (p<0.05) or hyperbaric nitrox (61.5%) (p<0.05). The onset time of DCS of the rats pretreated with HBO2 was significantly delayed compared with those treated with air (p<0.05). L-NAME nullified the HBO2 preconditioning effect. HBO2 increased NO level in the rat brain and spinal cord right after exposure; this effect was inhibited by L-NAME. Taken together, HBO2 preconditioning reduced the incidence of DCS in rats, and NO was involved in the prophylactic effect.


Asunto(s)
Enfermedad de Descompresión/prevención & control , Oxigenoterapia Hiperbárica/métodos , Óxido Nítrico/metabolismo , Animales , Encéfalo/metabolismo , Enfermedad de Descompresión/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Masculino , Actividad Motora/fisiología , NG-Nitroarginina Metil Éster/administración & dosificación , Óxido Nítrico/análisis , Nitrógeno/administración & dosificación , Oxígeno/administración & dosificación , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Factores de Tiempo
10.
J Appl Physiol (1985) ; 104(4): 1185-91, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18174394

RESUMEN

We studied the effect of hyperbaric oxygen (HBO) preconditioning on the molecular mechanisms of neuroprotection in a rat focal cerebral ischemic model. Seventy-two male Sprague-Dawley rats were pretreated with HBO (100% O(2), 2 atmospheres absolute, 1 h once every other day for 5 sessions) or with room air. In experiment 1, HBO-preconditioned rats and matched room air controls were subjected to focal cerebral ischemia or sham surgery. Postinjury motor parameters and infarction volumes of HBO-preconditioned rats were compared with those of controls. In experiment 2, HBO-preconditioned rats and matched room air controls were killed at different time points. Brain levels of hypoxia-inducible factor-1alpha (HIF-1alpha) and its downstream target gene erythropoietin (EPO) analyzed by Western blotting and RT-PCR as well as HIF-1alpha DNA-binding and transcriptional activities were determined in the ipsilateral hemisphere. HBO induced a marked increase in the protein expressions of HIF-1alpha and EPO and the activity of HIF-1alpha, as well as the expression of EPO mRNA. HBO preconditioning dramatically improved the neurobehavioral outcome at all time points (3.0 +/- 2.1 vs. 5.6 +/- 1.5 at 4 h, 5.0 +/- 1.8 vs. 8.8 +/- 1.4 at 8 h, 6.4 +/- 1.8 vs. 9.7 +/- 1.3 at 24 h; P < 0.01, respectively) and reduced infarction volumes (20.7 +/- 4.5 vs. 12.5 +/- 3.6%, 2,3,5-Triphenyltetrazolium chloride staining) after cerebral ischemia. This observation indicates that the neuroprotection induced by HBO preconditioning may be mediated by an upregulation of HIF-1alpha and its target gene EPO.


Asunto(s)
Isquemia Encefálica/terapia , Eritropoyetina/biosíntesis , Oxigenoterapia Hiperbárica , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Precondicionamiento Isquémico , Animales , Conducta Animal/efectos de los fármacos , Western Blotting , Isquemia Encefálica/fisiopatología , Infarto Cerebral/patología , Infarto Cerebral/prevención & control , Circulación Cerebrovascular/fisiología , ADN/biosíntesis , ADN/genética , ADN/metabolismo , Eritropoyetina/genética , Miembro Anterior/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Fármacos Neuroprotectores , Oxígeno/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/prevención & control , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sales de Tetrazolio , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiología
11.
Brain Res ; 1153: 204-13, 2007 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-17462608

RESUMEN

It has been established that hyperbaric oxygen (HBO) treatment reduces brain edema, decreases infarct volume, contributes to neurological functional recovery and suppresses apoptosis in suture-induced focal cerebral ischemic animal models. In the present study, we evaluated the therapeutic effect of HBO in an endothelin-1-induced focal cerebral ischemia in rats and explored the associated mechanisms of HBO-induced brain protection. One hundred twenty male Sprague-Dawley rats (280 to 320 g) were randomly assigned to sham, focal cerebral ischemia and focal cerebral ischemia treated with HBO groups. Brain water content, neurological function, morphology and molecular biological markers were assessed. HBO (100% O2, 2.5 atmosphere absolute for 2 h) was initiated at 1 h after focal cerebral ischemia. Rats were killed at 24 h to harvest tissues for Western blot or for histology. In HBO-treated animals, an enhanced ratio of Bcl-2 and Bax and a reduced expression of hypoxia-inducible factor-1alpha (HIF-1alpha) in the hippocampus after focal cerebral ischemia were observed. These results indicate that HBO provides brain protection that is probably associated with the inhibition of HIF-1alpha and the elevation of Bcl-2.


Asunto(s)
Isquemia Encefálica/terapia , Endotelina-1 , Oxigenoterapia Hiperbárica/métodos , Análisis de Varianza , Animales , Edema Encefálico/etiología , Edema Encefálico/terapia , Infarto Encefálico/etiología , Infarto Encefálico/terapia , Isquemia Encefálica/inducido químicamente , Isquemia Encefálica/complicaciones , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína X Asociada a bcl-2/metabolismo
12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 24(12): 1659-62, 2004 Dec.
Artículo en Chino | MEDLINE | ID: mdl-15828354

RESUMEN

The characteristic and mechanism of resonance light scattering (RLS) of Rhodamine B (RhB) were studied. In acidic solutions with pH from -0.38 to 4.10, the intensity of RLS increases with an increase in pH and reaches a maximum at nearly neutral pH. The change in RLS intensity with the wavelength was not accordant with Rayleigh scattering law. The fluorescence excitation and emission spectra of RhB overlap partly, and the RLS peak lies between the fluorescence excitation and emission peaks. In the three-dimensional fluorescence contour spectra of RhB, Rayleigh scattering line intersects fluorescence contour. In light polarization experiment, the polarization of RLS was measured to be P approximately = 0.1. All the above experimental facts reveal that the RLS of RhB is mainly resonance fluorescence. The mechanism of RLS enhancement by the increase in pH is that the formation of fluorescence species occurs in acid-base equilibrium. The RLS peak of RhB appears within the envelope of absorption, and light scattering is affected by light absorption, so, the relationship between RLS intensity and RhB concentration is not strictly linear.


Asunto(s)
Rodaminas/química , Dispersión de Radiación , Espectrometría de Fluorescencia/métodos , Absorción , Colorantes/química , Análisis de Inyección de Flujo/métodos , Luz , Estructura Molecular , Vibración
13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 23(1): 115-8, 2003 Feb.
Artículo en Chino | MEDLINE | ID: mdl-12939984

RESUMEN

Resonance light scattering (RLS), absorption and fluorescence spectra of aurintricarboxylic acid (ATA) were studied. In solutions with pH 3.7 to pH 11.0, the RLS signal was very weak, but increased sharply with a decrease in pH when pH < 3.7 and reached a maximum at pH 2.7. This enhancement effect of RLS occurred because the negative charged species of ATA were transformed into neutral molecules when pH decreased, and the neutral molecules assembled into supermolecular aggregates. Two peaks at 260 nm and 340 nm, respectively, and a valley at 300 nm, appeared in the RLS spectrum, whereas an absorption peak appeared at 300 nm in the absorption spectrum. This spectral feature reveals that the RLS spectrum was related to the absorption spectrum of ATA. The change in RLS intensity with the wavelength was not accordant with Rayleigh scattering law. The fluorescence excitation and emission spectra of ATA do not overlap, so resonance fluorescence was not involved in the RLS spectrum. Under a given set of experimental conditions, the RLS intensity increased with the increase in ATA concentration, which, however, was not a strictly linear relationship.


Asunto(s)
Ácido Aurintricarboxílico/química , Espectrometría de Fluorescencia , Colorantes/química , Concentración de Iones de Hidrógeno , Estructura Molecular , Dispersión de Radiación , Espectrometría de Fluorescencia/métodos , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA