Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Talanta ; 243: 123339, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35366492

RESUMEN

Mass spectrometry is uniquely suited to identify and quantify environmentally relevant molecules and molecular clusters. Mass spectrometry alone is, however, not able to distinguish between isomers. In this study, we demonstrate the use of both an experimental set-up using a differential mobility analyser, and computational ion mobility calculations for identification of isomers. In the experimental set-up, we combined electrospray ionisation with a differential mobility analyser time-of-flight mass spectrometer to separate environmentally relevant constitutional isomers, such as catechol, resorcinol and hydroquinone, and configurational isomers, such as cyclohexanediols and fatty acids (i.e., oleic and elaidic acids). Computational ion mobility predictions were obtained using the Ion Mobility Software (IMoS) program. We find that isomer separation can be achieved with the differential mobility analyser, while for catechol, resorcinol and hydroquinone, the computational predictions can reproduce the experimental order of the ion mobilities between the isomers, confirming the isomer identification. Our experimental set-up allows analysis both in the gas and liquid phase. The differential mobility analyser can, moreover, be combined with any mass spectrometry set-up, making it a versatile tool for the separation of isomers.


Asunto(s)
Isomerismo , Espectrometría de Masas/métodos
2.
Environ Sci Atmos ; 2(2): 146-164, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35419523

RESUMEN

Atmospheric aerosols have significant effects on the climate and on human health. New particle formation (NPF) is globally an important source of aerosols but its relevance especially towards aerosol mass loadings in highly polluted regions is still controversial. In addition, uncertainties remain regarding the processes leading to severe pollution episodes, concerning e.g. the role of atmospheric transport. In this study, we utilize air mass history analysis in combination with different fields related to the intensity of anthropogenic emissions in order to calculate air mass exposure to anthropogenic emissions (AME) prior to their arrival at Beijing, China. The AME is used as a semi-quantitative metric for describing the effect of air mass history on the potential for aerosol formation. We show that NPF events occur in clean air masses, described by low AME. However, increasing AME seems to be required for substantial growth of nucleation mode (diameter < 30 nm) particles, originating either from NPF or direct emissions, into larger mass-relevant sizes. This finding assists in establishing and understanding the connection between small nucleation mode particles, secondary aerosol formation and the development of pollution episodes. We further use the AME, in combination with basic meteorological variables, for developing a simple and easy-to-apply regression model to predict aerosol volume and mass concentrations. Since the model directly only accounts for changes in meteorological conditions, it can also be used to estimate the influence of emission changes on pollution levels. We apply the developed model to briefly investigate the effects of the COVID-19 lockdown on PM2.5 concentrations in Beijing. While no clear influence directly attributable to the lockdown measures is found, the results are in line with other studies utilizing more widely applied approaches.

3.
Sci Adv ; 6(22): eaay4945, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32518819

RESUMEN

Atmospheric new-particle formation (NPF) affects climate by contributing to a large fraction of the cloud condensation nuclei (CCN). Highly oxygenated organic molecules (HOMs) drive the early particle growth and therefore substantially influence the survival of newly formed particles to CCN. Nitrogen oxide (NOx) is known to suppress the NPF driven by HOMs, but the underlying mechanism remains largely unclear. Here, we examine the response of particle growth to the changes of HOM formation caused by NOx. We show that NOx suppresses particle growth in general, but the suppression is rather nonuniform and size dependent, which can be quantitatively explained by the shifted HOM volatility after adding NOx. By illustrating how NOx affects the early growth of new particles, a critical step of CCN formation, our results help provide a refined assessment of the potential climatic effects caused by the diverse changes of NOx level in forest regions around the globe.

4.
Sci Adv ; 4(11): eaat9744, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30498779

RESUMEN

Formation of new aerosol particles from trace gases is a major source of cloud condensation nuclei (CCN) in the global atmosphere, with potentially large effects on cloud optical properties and Earth's radiative balance. Controlled laboratory experiments have resolved, in detail, the different nucleation pathways likely responsible for atmospheric new particle formation, yet very little is known from field studies about the molecular steps and compounds involved in different regions of the atmosphere. The scarcity of primary particle sources makes secondary aerosol formation particularly important in the Antarctic atmosphere. Here, we report on the observation of ion-induced nucleation of sulfuric acid and ammonia-a process experimentally investigated by the CERN CLOUD experiment-as a major source of secondary aerosol particles over coastal Antarctica. We further show that measured high sulfuric acid concentrations, exceeding 107 molecules cm-3, are sufficient to explain the observed new particle growth rates. Our findings show that ion-induced nucleation is the dominant particle formation mechanism, implying that galactic cosmic radiation plays a key role in new particle formation in the pristine Antarctic atmosphere.

5.
Aerosol Sci Technol ; 51(8): 946-955, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28824221

RESUMEN

Measuring aerosols and molecular clusters below the 3 nm size limit is essential to increase our understanding of new particle formation. Instruments for the detection of sub-3 nm aerosols and clusters exist and need to be carefully calibrated and characterized. So far calibrations and laboratory tests have been carried out using mainly electrically charged aerosols, as they are easier to handle experimentally. However, the charging state of the cluster is an important variable to take into account. Furthermore, instrument characterization performed with charged aerosols could be biased, preventing a correct interpretation of data when electrically neutral sub-3 nm aerosols are involved. This article presents the first steps to generate electrically neutral molecular clusters as standards for calibration. We show two methods: One based on the neutralization of well-known molecular clusters (mobility standards) by ions generated in a switchable aerosol neutralizer. The second is based on the controlled neutralization of mobility standards with mobility standards of opposite polarity in a recombination cell. We highlight the challenges of these two techniques and, where possible, point out solutions. In addition, we give an outlook on the next steps toward generating well-defined neutral molecular clusters with a known chemical composition and concentration. Published with license by American Association for Aerosol Research.

6.
Science ; 352(6289): 1109-12, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27226488

RESUMEN

New particle formation (NPF) is the source of over half of the atmosphere's cloud condensation nuclei, thus influencing cloud properties and Earth's energy balance. Unlike in the planetary boundary layer, few observations of NPF in the free troposphere exist. We provide observational evidence that at high altitudes, NPF occurs mainly through condensation of highly oxygenated molecules (HOMs), in addition to taking place through sulfuric acid-ammonia nucleation. Neutral nucleation is more than 10 times faster than ion-induced nucleation, and growth rates are size-dependent. NPF is restricted to a time window of 1 to 2 days after contact of the air masses with the planetary boundary layer; this is related to the time needed for oxidation of organic compounds to form HOMs. These findings require improved NPF parameterization in atmospheric models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...