Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
JMIR Form Res ; 7: e41775, 2023 Apr 17.
Article En | MEDLINE | ID: mdl-37067873

BACKGROUND: Heart failure (HF) is highly prevalent in the United States. Approximately one-third to one-half of HF cases are categorized as HF with reduced ejection fraction (HFrEF). Patients with HFrEF are at risk of worsening HF, have a high risk of adverse outcomes, and experience higher health care use and costs. Therefore, it is crucial to identify patients with HFrEF who are at high risk of subsequent events after HF hospitalization. OBJECTIVE: Machine learning (ML) has been used to predict HF-related outcomes. The objective of this study was to compare different ML prediction models and feature construction methods to predict 30-, 90-, and 365-day hospital readmissions and worsening HF events (WHFEs). METHODS: We used the Veradigm PINNACLE outpatient registry linked to Symphony Health's Integrated Dataverse data from July 1, 2013, to September 30, 2017. Adults with a confirmed diagnosis of HFrEF and HF-related hospitalization were included. WHFEs were defined as HF-related hospitalizations or outpatient intravenous diuretic use within 1 year of the first HF hospitalization. We used different approaches to construct ML features from clinical codes, including frequencies of clinical classification software (CCS) categories, Bidirectional Encoder Representations From Transformers (BERT) trained with CCS sequences (BERT + CCS), BERT trained on raw clinical codes (BERT + raw), and prespecified features based on clinical knowledge. A multilayer perceptron neural network, extreme gradient boosting (XGBoost), random forest, and logistic regression prediction models were applied and compared. RESULTS: A total of 30,687 adult patients with HFrEF were included in the analysis; 11.41% (3184/27,917) of adults experienced a hospital readmission within 30 days of their first HF hospitalization, and nearly half (9231/21,562, 42.81%) of the patients experienced at least 1 WHFE within 1 year after HF hospitalization. The prediction models and feature combinations with the best area under the receiver operating characteristic curve (AUC) for each outcome were XGBoost with CCS frequency (AUC=0.595) for 30-day readmission, random forest with CCS frequency (AUC=0.630) for 90-day readmission, XGBoost with CCS frequency (AUC=0.649) for 365-day readmission, and XGBoost with CCS frequency (AUC=0.640) for WHFEs. Our ML models could discriminate between readmission and WHFE among patients with HFrEF. Our model performance was mediocre, especially for the 30-day readmission events, most likely owing to limitations of the data, including an imbalance between positive and negative cases and high missing rates of many clinical variables and outcome definitions. CONCLUSIONS: We predicted readmissions and WHFEs after HF hospitalizations in patients with HFrEF. Features identified by data-driven approaches may be comparable with those identified by clinical domain knowledge. Future work may be warranted to validate and improve the models using more longitudinal electronic health records that are complete, are comprehensive, and have a longer follow-up time.

2.
J Health Econ Outcomes Res ; 8(2): 6-13, 2021.
Article En | MEDLINE | ID: mdl-34414250

Background: Deep Learning (DL) has not been well-established as a method to identify high-risk patients among patients with heart failure (HF). Objectives: This study aimed to use DL models to predict hospitalizations, worsening HF events, and 30-day and 90-day readmissions in patients with heart failure with reduced ejection fraction (HFrEF). Methods: We analyzed the data of adult HFrEF patients from the IBM® MarketScan® Commercial and Medicare Supplement databases between January 1, 2015 and December 31, 2017. A sequential model architecture based on bi-directional long short-term memory (Bi-LSTM) layers was utilized. For DL models to predict HF hospitalizations and worsening HF events, we utilized two study designs: with and without a buffer window. For comparison, we also tested multiple traditional machine learning models including logistic regression, random forest, and eXtreme Gradient Boosting (XGBoost). Model performance was assessed by area under the curve (AUC) values, precision, and recall on an independent testing dataset. Results: A total of 47 498 HFrEF patients were included; 9427 with at least one HF hospitalization. The best AUCs of DL models without a buffer window in predicting HF hospitalizations and worsening HF events in the total patient cohort were 0.977 and 0.972; with a 7-day buffer window the best AUCs were 0.573 and 0.608, respectively. The best AUCs in predicting 30- and 90-day readmissions in all adult patients were 0.597 and 0.614, respectively. An AUC of 0.861 was attained for prediction of 90-day readmission in patients aged 18-64. For all outcomes assessed, the DL approach outperformed traditional machine learning models. Discussion: The DL approach can automate feature engineering during the model learning, which can increase the clinical applicability and lead to comparable or better model performance. However, the lack of granular clinical data, and sample size and imbalance issues may have limited the model's performance. Conclusions: A DL approach using Bi-LSTM was shown to be a feasible and useful tool to predict HF-related outcomes. This study can help inform the future development and deployment of predictive tools to identify high-risk HFrEF patients and ultimately facilitate targeted interventions in clinical practice.

...