Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 7(8): 1210-1220, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35817890

RESUMEN

Vibrio cholerae biotype El Tor is perpetuating the longest cholera pandemic in recorded history. The genomic islands VSP-1 and VSP-2 distinguish El Tor from previous pandemic V. cholerae strains. Using a co-occurrence analysis of VSP genes in >200,000 bacterial genomes we built gene networks to infer biological functions encoded in these islands. This revealed that dncV, a component of the cyclic-oligonucleotide-based anti-phage signalling system (CBASS) anti-phage defence system, co-occurs with an uncharacterized gene vc0175 that we rename avcD for anti-viral cytodine deaminase. We show that AvcD is a deoxycytidylate deaminase and that its activity is post-translationally inhibited by a non-coding RNA named AvcI. AvcID and bacterial homologues protect bacterial populations against phage invasion by depleting free deoxycytidine nucleotides during infection, thereby decreasing phage replication. Homologues of avcD exist in all three domains of life, and bacterial AvcID defends against phage infection by combining traits of two eukaryotic innate viral immunity proteins, APOBEC and SAMHD1.


Asunto(s)
Bacteriófagos , Cólera , Vibrio cholerae , Bacteriófagos/genética , Cólera/microbiología , Toxina del Cólera , Islas Genómicas , Humanos , Vibrio cholerae/genética
2.
J Struct Biol ; 211(3): 107571, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32653644

RESUMEN

Adhesion to cell surfaces is an essential and early prerequisite for successful host colonization by bacteria, and in most instances involves the specificities of various adhesins. Among bacterial Gram-positives, some genera and species mediate attachment to host cells by using long non-flagellar appendages called sortase-dependent pili. A case in point is the beneficial Lactobacillus rhamnosus GG gut-adapted strain that produces the so-called SpaCBA pilus, a structure noted for its promiscuous binding to intestinal mucus and collagen. Structurally, SpaCBA pili are heteropolymers of three different pilin-protein subunits, each with its own location and function in the pilus: backbone SpaA for length, basal SpaB for anchoring, and tip SpaC for adhesion. Previously, we solved the SpaA tertiary structure by X-ray crystallography and also reported on the crystallization of SpaB and SpaC. Here, we reveal the full-length high-resolution (1.9 Å) crystal structure of SpaC, a first for a sortase-dependent pilus-bearing commensal. The SpaC structure, unlike the representative four-domain architecture of other Gram-positive tip pilins, espouses an atypically longer five-domain arrangement that includes N-terminal 'binding' and C-terminal 'stalk' regions of two and three domains, respectively. With the prospect of establishing new mechanistic insights, we provide a structural basis for the multi-substrate binding nature of SpaC, as well as a structural model that reconciles its exclusive localization at the SpaCBA pilus tip.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/química , Lacticaseibacillus rhamnosus/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Colágeno/metabolismo , Cristalografía por Rayos X , Fimbrias Bacterianas/metabolismo , Lacticaseibacillus rhamnosus/citología , Proteínas de la Membrana/genética , Microscopía de Fuerza Atómica , Microscopía Inmunoelectrónica , Modelos Moleculares , Simulación del Acoplamiento Molecular , Dominios Proteicos
3.
Curr Res Struct Biol ; 2: 229-238, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34235482

RESUMEN

To successfully colonize a host or environment, certain genera and species of Gram-positive bacteria have evolved to utilize the so-called sortase-dependent pilus, a long multi-subunit and non-flagellar surface adhesin. One example of this is Lactobacillus rhamnosus GG, a gut-adapted probiotic strain that produces SpaCBA pili. These structures are covalent hetero-oligomers built from three types of pilin subunit, each with a specific location and function (i.e., backbone SpaA for length, tip SpaC for adhesion, and basal SpaB for anchoring). Functionally, the SpaCBA pilus exhibits a promiscuous affinity for components on intestinal surfaces (e.g., mucus, collagen, and epithelial cells), which is largely attributed to the SpaC subunit. Then again, the basal SpaB pilin, in addition to acting as the terminal subunit during pilus assembly, displays an out of character mucoadhesive function. To address the structural basis of this unusual dual functionality, we reveal the 2.39 â€‹Å resolution crystal structure of SpaB. SpaB consists of one immunoglobulin-like CnaB domain and contains a putative intermolecular isopeptide bond-linking lysine and internal isopeptide bond-asparagine in an FPKN pilin motif within the C-terminal end. Remarkably, we found that a C-terminal stretch of positively charged lysine and arginine residues likely accounts for the atypical mucoadhesiveness of SpaB. Although harboring an autocatalytic triad of residues for a potential internal isopeptide interaction, the SpaB crystal structure lacked the visible electron density for intact bond formation, yet its presence was subsequently confirmed by mass spectral analysis. Finally, we propose a structural model that captures the exclusive basal positioning of SpaB in the SpaCBA pilus.

4.
Protein Pept Lett ; 23(4): 365-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26732247

RESUMEN

Gram-positive Lactobacillus rhamnosus GG, a gut-adapted commensalic (and probiotic) strain, is known to express sortase-assembled pili on its cell surface. These SpaCBA-called pili consist of three different types of building blocks; the SpaA backbone-pilin subunit and the SpaB and SpaC ancillary pilins. SpaC is a relatively large (~90kDa) multi-domain fimbrial adhesin, and while it is located primarily at the SpaCBA pilus tip, occasionally, it can also be detected throughout the length of pilus backbone. Functionally, SpaC mainly accounts for SpaCBA pilus-mediated interactions with intestinal mucus, collagen, and human gut epithelial cells. Moreover, SpaC adhesiveness is also perceived to have a causal relationship with SpaCBA pilus-induced host-cell immune responses. In order to improve the mechanistic understanding of SpaC and its adhesive properties by structural investigation, we purified and successfully crystallized a recombinant construct of the near full-length SpaC protein (residues 36-856) in the presence of magnesium ions. X-ray diffraction data were collected to 2.6 Å resolution. The SpaC crystal belongs to the space group P21212 with unit cell parameters a = 116.5, b = 128.3, c = 136.5 Å and contains two molecules in the asymmetric unit. Presence of conserved metal ion-dependent adhesion site containing von Willebrand factor type A domain suggests its likely role in the function of SpaC.


Asunto(s)
Proteínas Bacterianas/química , Cristalografía por Rayos X/métodos , Tracto Gastrointestinal/citología , Lacticaseibacillus rhamnosus/metabolismo , Proteínas de la Membrana/química , Sitios de Unión , Células Epiteliales/microbiología , Tracto Gastrointestinal/microbiología , Humanos , Lacticaseibacillus rhamnosus/química , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...