Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892177

RESUMEN

Alpha-synuclein seed amplification assays (αSyn-SAAs) have emerged as promising diagnostic tools for Parkinson's disease (PD) by detecting misfolded αSyn and amplifying the signal through cyclic shaking and resting in vitro. Recently, our group and others have shown that multiple biospecimens, including CSF, skin, and submandibular glands (SMGs), can be used to seed the aggregation reaction and robustly distinguish between patients with PD and non-disease controls. The ultrasensitivity of the assay affords the ability to detect minute quantities of αSyn in peripheral tissues, but it also produces various technical challenges of variability. To address the problem of variability, we present a high-yield αSyn protein purification protocol for the efficient production of monomers with a low propensity for self-aggregation. We expressed wild-type αSyn in BL21 Escherichia coli, lysed the cells using osmotic shock, and isolated αSyn using acid precipitation and fast protein liquid chromatography (FPLC). Following purification, we optimized the ionic strength of the reaction buffer to distinguish the fluorescence maximum (Fmax) separation between disease and healthy control tissues for enhanced assay performance. Our protein purification protocol yielded high quantities of αSyn (average: 68.7 mg/mL per 1 L of culture) and showed highly precise and robust αSyn-SAA results using brain, skin, and SMGs with inter-lab validation.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/química , alfa-Sinucleína/aislamiento & purificación , alfa-Sinucleína/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Concentración Osmolar , Reproducibilidad de los Resultados , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791326

RESUMEN

Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.


Asunto(s)
Compuestos de Manganeso , Manganeso , Ratones Endogámicos C57BL , Vanadio , Animales , Ratones , Manganeso/toxicidad , Vanadio/toxicidad , Masculino , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/patología , Dopamina/metabolismo , Compuestos de Vanadio , Estrés Oxidativo/efectos de los fármacos , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , alfa-Sinucleína/metabolismo , Cloruros/toxicidad , Cloruros/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Aldehídos/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Modelos Animales de Enfermedad , Ácido 3,4-Dihidroxifenilacético/metabolismo
3.
Front Neurosci ; 18: 1356703, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449738

RESUMEN

Impaired mitochondrial function and biogenesis have strongly been implicated in the pathogenesis of Parkinson's disease (PD). Thus, identifying the key signaling mechanisms regulating mitochondrial biogenesis is crucial to developing new treatment strategies for PD. We previously reported that protein kinase D1 (PKD1) activation protects against neuronal cell death in PD models by regulating mitochondrial biogenesis. To further harness the translational drug discovery potential of targeting PKD1-mediated neuroprotective signaling, we synthesized mito-metformin (Mito-Met), a mitochondria-targeted analog derived from conjugating the anti-diabetic drug metformin with a triphenylphosphonium functional group, and then evaluated the preclinical efficacy of Mito-Met in cell culture and MitoPark animal models of PD. Mito-Met (100-300 nM) significantly activated PKD1 phosphorylation, as well as downstream Akt and AMPKα phosphorylation, more potently than metformin, in N27 dopaminergic neuronal cells. Furthermore, treatment with Mito-Met upregulated the mRNA and protein expression of mitochondrial transcription factor A (TFAM) implying that Mito-Met can promote mitochondrial biogenesis. Interestingly, Mito-Met significantly increased mitochondrial bioenergetics capacity in N27 dopaminergic cells. Mito-Met also reduced mitochondrial fragmentation induced by the Parkinsonian neurotoxicant MPP+ in N27 cells and protected against MPP+-induced TH-positive neurite loss in primary neurons. More importantly, Mito-Met treatment (10 mg/kg, oral gavage for 8 week) significantly improved motor deficits and reduced striatal dopamine depletion in MitoPark mice. Taken together, our results demonstrate that Mito-Met possesses profound neuroprotective effects in both in vitro and in vivo models of PD, suggesting that pharmacological activation of PKD1 signaling could be a novel neuroprotective translational strategy in PD and other related neurocognitive diseases.

4.
bioRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38328119

RESUMEN

As the most abundant glial cells in the CNS, astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress have remained elusive. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stresser, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, neurotoxic stress induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechnistically, YTHDF2 RIP-sequencing identified MAP2K4 ( MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed Mn-exposed astrocytes mediates proinflammatory response by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves a key upstream 'molecular switch' controlling SEK1( MAP2K4 )-JNK-cJUN proinflammatory signaling in astrocytes.

5.
Front Immunol ; 14: 1052925, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033967

RESUMEN

Epigenetic reprogramming is the ability of innate immune cells to form memories of environmental stimuli (priming), allowing for heightened responses to secondary stressors. Herein, we explored microglial epigenetic marks using the known inflammagen LPS as a memory priming trigger and Parkinsonian-linked environmental neurotoxic stressor manganese (Mn) as the secondary environmental trigger. To mimic physiological responses, the memory priming trigger LPS treatment was removed by triple-washing to allow the cells' acute inflammatory response to reset back before applying the secondary insult. Our results show that after the secondary Mn insult, levels of key proinflammatory markers, including nitrite release, iNOS mRNA and protein expression, Il-6, Il-α and cytokines were exaggerated in LPS-primed microglia. Our paradigm implies primed microglia retain immune memory that can be reprogrammed to augment inflammatory response by secondary environmental stress. To ascertain the molecular underpinning of this neuroimmune memory, we further hypothesize that epigenetic reprogramming contributes to the retention of a heightened immune response. Interestingly, Mn-exposed, LPS-primed microglia showed enhanced deposition of H3K27ac and H3K4me3 along with H3K4me1. We further confirmed the results using a PD mouse model (MitoPark) and postmortem human PD brains, thereby adding clinical relevance to our findings. Co-treatment with the p300/H3K27ac inhibitor GNE-049 reduced p300 expression and H3K27ac deposition, decreased iNOS, and increased ARG1 and IRF4 levels. Lastly, since mitochondrial stress is a driver of environmentally linked Parkinson's disease (PD) progression, we examined the effects of GNE-049 on primary trigger-induced mitochondrial stress. GNE-049 reduced mitochondrial superoxide, mitochondrial circularity and stress, and mitochondrial membrane depolarization, suggesting beneficial consequences of GNE-049 on mitochondrial function. Collectively, our findings demonstrate that proinflammatory primary triggers can shape microglial memory via the epigenetic mark H3K27ac and that inhibiting H3K27ac deposition can prevent primary trigger immune memory formation and attenuate subsequent secondary inflammatory responses.


Asunto(s)
Enfermedades Neuroinflamatorias , Enfermedad de Parkinson , Ratones , Animales , Humanos , Microglía , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Acetilación , Histonas/metabolismo , Enfermedad de Parkinson/metabolismo , Epigénesis Genética
6.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142718

RESUMEN

As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.


Asunto(s)
Herbicidas , Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Plaguicidas , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , DDT , Dieldrín/metabolismo , Herbicidas/metabolismo , Humanos , Manganeso/metabolismo , Mitocondrias/metabolismo , Enfermedades Neuroinflamatorias , Síndromes de Neurotoxicidad/patología , Estrés Oxidativo , Paraquat , Enfermedad de Parkinson/metabolismo , Plaguicidas/metabolismo , Plaguicidas/toxicidad , Factores de Riesgo , Rotenona/metabolismo , Tricloroetanos/metabolismo , Vanadio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
Int J Biochem Cell Biol ; 147: 106225, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35550926

RESUMEN

Despite the growing recognition that gastrointestinal (GI) dysfunction is prevalent in Parkinson's disease (PD) and occurs as a major prodromal symptom of PD, its cellular and molecular mechanisms remain largely unknown. Among the various types of GI cells, enteric glial cells (EGCs), which resemble astrocytes in structure and function, play a critical role in the pathophysiology of many GI diseases including PD. Thus, we investigated how EGCs respond to the environmental pesticides rotenone (Rot) and tebufenpyrad (Tebu) in cell and animal models to better understand the mechanism underlying GI abnormalities. Both Rot and Tebu induce dopaminergic neuronal cell death through complex 1 inhibition of the mitochondrial respiratory chain. We report that exposing a rat enteric glial cell model (CRL-2690 cells) to these pesticides increased mitochondrial fission and reduced mitochondrial fusion by impairing MFN2 function. Furthermore, they also increased mitochondrial superoxide generation and impaired mitochondrial ATP levels and basal respiratory rate. Measurement of LC3, p62 and lysosomal assays revealed impaired autolysosomal function in ECGs during mitochondrial stress. Consistent with our recent findings that mitochondrial dysfunction augments inflammation in astrocytes and microglia, we found that neurotoxic pesticide exposure also enhanced the production of pro-inflammatory factors in EGCs in direct correlation with the loss in mitochondrial mass. Finally, we show that pesticide-induced mitochondrial defects functionally impaired smooth muscle velocity, acceleration, and total kinetic energy in a mixed primary culture of the enteric nervous system (ENS). Collectively, our studies demonstrate for the first time that exposure to environmental neurotoxic pesticides impairs mitochondrial bioenergetics and activates inflammatory pathways in EGCs, further augmenting mitochondrial dysfunction and pro-inflammatory events to induce gut dysfunction. Our findings have major implications in understanding the GI-related pathogenesis and progression of environmentally linked PD.


Asunto(s)
Enfermedad de Parkinson , Plaguicidas , Animales , Eje Cerebro-Intestino , Inflamación/inducido químicamente , Mitocondrias , Neuroglía , Enfermedad de Parkinson/etiología , Plaguicidas/toxicidad , Ratas , Rotenona/toxicidad
8.
Front Neurosci ; 16: 836605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281490

RESUMEN

The human gut microbiota is a complex, dynamic, and highly diverse community of microorganisms. Beginning as early as in utero fetal development and continuing through birth to late-stage adulthood, the crosstalk between the gut microbiome and brain is essential for modulating various metabolic, neurodevelopmental, and immune-related pathways. Conversely, microbial dysbiosis - defined as alterations in richness and relative abundances - of the gut is implicated in the pathogenesis of several chronic neurological and neurodegenerative disorders. Evidence from large-population cohort studies suggests that individuals with neurodegenerative conditions have an altered gut microbial composition as well as microbial and serum metabolomic profiles distinct from those in the healthy population. Dysbiosis is also linked to psychiatric and gastrointestinal complications - comorbidities often associated with the prodromal phase of Parkinson's disease (PD) and Alzheimer's disease (AD). Studies have identified potential mediators that link gut dysbiosis and neurological disorders. Recent findings have also elucidated the potential mechanisms of disease pathology in the enteric nervous system prior to the onset of neurodegeneration. This review highlights the functional pathways and mechanisms, particularly gut microbe-induced chronic inflammation, protein misfolding, propagation of disease-specific pathology, defective protein clearance, and autoimmune dysregulation, linking gut microbial dysbiosis and neurodegeneration. In addition, we also discuss how pathogenic transformation of microbial composition leads to increased endotoxin production and fewer beneficial metabolites, both of which could trigger immune cell activation and enteric neuronal dysfunction. These can further disrupt intestinal barrier permeability, aggravate the systemic pro-inflammatory state, impair blood-brain barrier permeability and recruit immune mediators leading to neuroinflammation and neurodegeneration. Continued biomedical advances in understanding the microbiota-gut-brain axis will extend the frontier of neurodegenerative disorders and enable the utilization of novel diagnostic and therapeutic strategies to mitigate the pathological burden of these diseases.

9.
JCI Insight ; 6(17)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34494552

RESUMEN

Mitochondrial dysfunction is a major pathophysiological contributor to the progression of Parkinson's disease (PD); however, whether it contributes to epigenetic dysregulation remains unknown. Here, we show that both chemically and genetically driven mitochondrial dysfunctions share a common mechanism of epigenetic dysregulation. Under both scenarios, lysine 27 acetylation of likely variant H3.3 (H3.3K27ac) increased in dopaminergic neuronal models of PD, thereby opening that region to active enhancer activity via H3K27ac. These vulnerable epigenomic loci represent potential transcription factor motifs for PD pathogenesis. We further confirmed that mitochondrial dysfunction induces H3K27ac in ex vivo and in vivo (MitoPark) neurodegenerative models of PD. Notably, the significantly increased H3K27ac in postmortem PD brains highlights the clinical relevance to the human PD population. Our results reveal an exciting mitochondrial dysfunction-metabolism-H3K27ac-transcriptome axis for PD pathogenesis. Collectively, the mechanistic insights link mitochondrial dysfunction to epigenetic dysregulation in dopaminergic degeneration and offer potential new epigenetic intervention strategies for PD.


Asunto(s)
Encéfalo/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Mutación , Estrés Oxidativo , Enfermedad de Parkinson/genética , Acetilación , Animales , Encéfalo/patología , Células Cultivadas , ADN/genética , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Procesamiento Proteico-Postraduccional , Factores de Transcripción/genética
10.
Environ Health Perspect ; 129(8): 87005, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34410835

RESUMEN

BACKGROUND: Chronic environmental exposure to manganese (Mn) can cause debilitating damage to the central nervous system. However, its potential toxic effects on the enteric nervous system (ENS) have yet to be assessed. OBJECTIVE: We examined the effect of Mn on the ENS using both cell and animal models. METHOD: Rat enteric glial cells (EGCs) and mouse primary enteric cultures were exposed to increasing concentrations of Mn and cell viability and mitochondrial health were assessed using various morphological and functional assays. C57BL/6 mice were exposed daily to a sublethal dose of Mn (15mg/kg/d) for 30 d. Gut peristalsis, enteric inflammation, gut microbiome profile, and fecal metabolite composition were assessed at the end of exposure. RESULTS: EGC mitochondria were highly susceptible to Mn neurotoxicity, as evidenced by lower mitochondrial mass, adenosine triphosphate-linked respiration, and aconitase activity as well as higher mitochondrial superoxide, upon Mn exposure. Minor differences were seen in the mouse model: specifically, longer intestinal transit times and higher levels of colonic inflammation. CONCLUSION: Based on our findings from this study, Mn preferentially induced mitochondrial dysfunction in a rat EGC line and in vivo resulted in inflammation in the ENS. https://doi.org/10.1289/EHP7877.


Asunto(s)
Sistema Nervioso Entérico , Microbioma Gastrointestinal , Animales , Manganeso/toxicidad , Ratones , Ratones Endogámicos C57BL , Neuroglía/metabolismo , Ratas
11.
Front Aging Neurosci ; 13: 661505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276337

RESUMEN

A classical hallmark of Parkinson's disease (PD) pathogenesis is the accumulation of misfolded alpha-synuclein (αSyn) within Lewy bodies and Lewy neurites, although its role in microglial dysfunction and resultant dopaminergic (DAergic) neurotoxicity is still elusive. Previously, we identified that protein kinase C delta (PKCδ) is activated in post mortem PD brains and experimental Parkinsonism and that it participates in reactive microgliosis; however, the relationship between PKCδ activation, endoplasmic reticulum stress (ERS) and the reactive microglial activation state in the context of α-synucleinopathy is largely unknown. Herein, we show that oxidative stress, mitochondrial dysfunction, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, and PKCδ activation increased concomitantly with ERS markers, including the activating transcription factor 4 (ATF-4), serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1α (p-IRE1α), p-eukaryotic initiation factor 2 (eIF2α) as well as increased generation of neurotoxic cytokines, including IL-1ß in aggregated αSynagg-stimulated primary microglia. Importantly, in mouse primary microglia-treated with αSynagg we observed increased expression of Thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of the thioredoxin (Trx) pathway, a major antioxidant protein system. Additionally, αSynagg promoted interaction between NLRP3 and TXNIP in these cells. In vitro knockdown of PKCδ using siRNA reduced ERS and led to reduced expression of TXNIP and the NLRP3 activation response in αSynagg-stimulated mouse microglial cells (MMCs). Additionally, attenuation of mitochondrial reactive oxygen species (mitoROS) via mito-apocynin and amelioration of ERS via the eIF2α inhibitor salubrinal (SAL) reduced the induction of the ERS/TXNIP/NLRP3 signaling axis, suggesting that mitochondrial dysfunction and ERS may act in concert to promote the αSynagg-induced microglial activation response. Likewise, knockdown of TXNIP by siRNA attenuated the αSynagg-induced NLRP3 inflammasome activation response. Finally, unilateral injection of αSyn preformed fibrils (αSynPFF) into the striatum of wild-type mice induced a significant increase in the expression of nigral p-PKCδ, ERS markers, and upregulation of the TXNIP/NLRP3 inflammasome signaling axis prior to delayed loss of TH+ neurons. Together, our results suggest that inhibition of ERS and its downstream signaling mediators TXNIP and NLRP3 might represent novel therapeutic avenues for ameliorating microglia-mediated neuroinflammation in PD and other synucleinopathies.

12.
Front Pharmacol ; 12: 631375, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995031

RESUMEN

Oxidative stress, neuroinflammation and apoptosis are some of the key etiological factors responsible for dopamin(DA)ergic degeneration during Parkinson's disease (PD), yet the downstream molecular mechanisms underlying neurodegeneration are largely unknown. Recently, a genome-wide association study revealed the FYN gene to be associated with PD, suggesting that Fyn kinase could be a pharmacological target for PD. In this study, we report that Fyn-mediated PKCδ tyrosine (Y311) phosphorylation is a key event preceding its proteolytic activation in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinsonism. MPP+/MPTP induced Fyn kinase activation in N27 DAergic neuronal cells and the mouse substantia nigra. PKCδ-Y311 phosphorylation by activated Fyn initiates the apoptotic caspase-signaling cascade during DAergic degeneration. Pharmacological attenuation of Fyn activity protected DAergic neurons from MPP+-induced degeneration in primary mesencephalic neuronal cultures. We further employed Fyn wild-type and Fyn knockout (KO) mice to confirm whether Fyn is a valid pharmacological target of DAergic neurodegeneration. Primary mesencephalic neurons from Fyn KO mice were greatly protected from MPP+-induced DAergic cell death, neurite loss and DA reuptake loss. Furthermore, Fyn KO mice were significantly protected from MPTP-induced PKCδ-Y311 phosphorylation, behavioral deficits and nigral DAergic degeneration. This study thus unveils a mechanism by which Fyn regulates PKCδ's pro-apoptotic function and DAergic degeneration. Pharmacological inhibitors directed at Fyn activation could prove to be a novel therapeutic target in the delay or halting of selective DAergic degeneration during PD.

13.
Exp Neurol ; 341: 113716, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33839143

RESUMEN

Mitochondrial dysfunction has been implicated as a key player in the pathogenesis of Parkinson's disease (PD). The MitoPark mouse, a transgenic mitochondrial impairment model developed by specific inactivation of TFAM in dopaminergic neurons, spontaneously exhibits progressive motor deficits and neurodegeneration, recapitulating several features of PD. Since nonmotor symptoms are now recognized as important features of the prodromal stage of PD, we comprehensively assessed the clinically relevant motor and nonmotor deficiencies from ages 8-24 wk in both male and female MitoPark mice and their littermate controls. As expected, motor deficits in MitoPark mice began around 12-14 wk and became severe by 16-24 wk. Interestingly, MitoPark mice exhibited olfactory deficits in the novel and social scent tests as early as 10-12 wk as compared to age-matched littermate controls. Additionally, male MitoPark mice showed spatial memory deficits before female mice, beginning at 8 wk and becoming most severe at 16 wk, as determined by the Morris water maze. MitoPark mice between 16 and 24 wk spent more time immobile in forced swim and tail suspension tests, and made fewer entries into open arms of the elevated plus maze, indicating a depressive and anxiety-like phenotype, respectively. Importantly, depressive behavior as determined by immobility in forced swim test was reversible by antidepressant treatment with desipramine. Neurochemical and mechanistic studies revealed significant changes in CREB phosphorylation, BDNF, and catecholamine levels as well as neurogenesis in key brain regions. Collectively, our results indicate that MitoPark mice progressively exhibit deficits in olfactory discrimination, cognitive learning and memory, and anxiety- and depression-like behaviors as well as key neurochemical signaling associated with nonmotor deficits in PD. Thus, MitoPark mice can serve as an invaluable model for studying nonmotor deficits in addition to studying the motor deficits related to pathology in PD.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/patología
14.
Toxicol Sci ; 181(1): 13-22, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33616673

RESUMEN

Epitranscriptomics, the study of chemically modified RNAs, is a burgeoning field being explored in a variety of scientific disciplines. Of the currently known epitranscriptomic modifications, N6-methyladenosine (m6A) methylation is the most abundant. The m6A modification is predominantly regulated by 3 tiers of protein modulators classified as writers, erasers, and readers. Depending upon cellular needs, these proteins function to deposit, remove, or read the methyl modifications on cognate mRNAs. Many environmental chemicals including heavy metals, pesticides, and other toxic pollutants, are all known to perturb transcription and translation machinery to exert their toxic responses. As such, we herein review how the m6A modification may be affected under different toxicological paradigms. Furthermore, we discuss how toxicants can affect the 3 tiers of regulation directly, and how these effects influence the m6A-modified mRNAs. Lastly, we highlight the disparities between published findings and theories, especially those concerning the m6A reader tier of regulation. In the far-reaching field of toxicology, m6A epitranscriptomics provides another enticing avenue to explore new mechanisms and therapies for a diverse range of environmentally linked disorders and diseases.


Asunto(s)
Adenosina , ARN , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/toxicidad , Humanos , Metilación , ARN Mensajero/metabolismo
15.
Mov Disord ; 35(12): 2230-2239, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32960470

RESUMEN

BACKGROUND: An unmet clinical need in Parkinson's disease (PD) is to identify biomarkers for diagnosis, preferably in peripherally accessible tissues such as skin. Immunohistochemical studies have detected pathological α-synuclein (αSyn) in skin biopsies from PD patients albeit sensitivity needs to be improved. OBJECTIVE: Our study provides the ultrasensitive detection of pathological αSyn present in the skin of PD patients, and thus, pathological αSyn in skin could be a potential biomarker for PD. METHODS: The real-time quaking-induced conversion assay was used to detect pathological αSyn present in human skin tissues. Further, we optimized this ultra-sensitive and specific assay for both frozen and formalin-fixed paraffin-embedded sections of skin tissues. We determined the seeding kinetics of the αSyn present in the skin from autopsied subjects consisting of frozen skin tissues from 25 PD and 25 controls and formalin-fixed paraffin-embedded skin sections from 12 PD and 12 controls. RESULTS: In a blinded study of skin tissues from autopsied subjects, we correctly identified 24/25 PD and 24/25 controls using frozen skin tissues (96% sensitivity and 96% specificity) compared to 9/12 PD and 10/12 controls using formalin-fixed paraffin-embedded skin sections (75% sensitivity and 83% specificity). CONCLUSIONS: Our blinded study results clearly demonstrate the feasibility of using skin tissues for clinical diagnosis of PD by detecting pathological αSyn. Moreover, this peripheral biomarker discovery study may have broader translational value in detecting misfolded proteins in skin samples as a longitudinal progression marker. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Autopsia , Biomarcadores , Humanos , alfa-Sinucleína
16.
Cells ; 9(8)2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759670

RESUMEN

Astrocytic dysfunction has been implicated in Parkinson's disease (PD) pathogenesis. While the Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/Fn14 signaling axis is known to play a role in PD-like neuropathology, the molecular mechanisms that govern this process remain poorly understood. Herein, we show that TWEAK levels are elevated in PD serum compared to controls. Moreover, using both U373 human astrocyte cells and primary mouse astrocytes, we demonstrate that TWEAK induces mitochondrial oxidative stress as well as protein kinase C delta (PKCδ) and signal transducer and activator of transcription 3 (STAT3) activation, accompanied by NLRC4 inflammasome activation and upregulation and release of proinflammatory cytokines, including IL-1ß, TNF-α, and IL-18. Mechanistically, TWEAK-induced PKCδ activation enhances the STAT3/NLRC4 signaling pathway and other proinflammatory mediators through a mitochondrial oxidative stress-dependent mechanism. We further show that PKCδ knockdown and mito-apocynin, a mitochondrial antioxidant, suppress TWEAK-induced proinflammatory NLRC4/STAT3 signaling and cellular oxidative stress response. Notably, we validated our in vitro findings in an MPTP mouse model of PD and in mice receiving intrastriatal administration of TWEAK. These results indicate that TWEAK is a key regulator of astroglial reactivity and illustrate a novel mechanism by which mitochondrial oxidative stress may influence dopaminergic neuronal survival in PD.


Asunto(s)
Astrocitos/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al Calcio/metabolismo , Citocina TWEAK/metabolismo , Inflamasomas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteína Quinasa C-delta/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Apoptosis , Astrocitos/patología , Supervivencia Celular , Células Cultivadas , Citocina TWEAK/sangre , Citocina TWEAK/genética , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/patología , Proteína Quinasa C-delta/genética , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor de TWEAK/metabolismo
17.
Eur J Pharmacol ; 881: 173259, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32565338

RESUMEN

Systemic inflammation resulting from the release of pro-inflammatory cytokines and the chronic activation of the innate immune system remains a major cause of morbidity and mortality in the United States. After having demonstrated that Fyn, a Src family kinase, regulates microglial neuroinflammatory responses in cell culture and animal models of Parkinson's disease, we investigate here its role in modulating systemic inflammation using an endotoxic mouse model. Fyn knockout (KO) and their wild-type (WT) littermate mice were injected once intraperitoneally with either saline or 5 mg/kg lipopolysaccharide (LPS) and were killed 48 h later. LPS-induced mortality, endotoxic symptoms and hypothermia were significantly attenuated in Fyn KO, but not WT, mice. LPS reduced survival in Fyn WT mice to 49% compared to 84% in Fyn KO mice. Fyn KO mice were also protected from LPS-induced deficits in horizontal and vertical locomotor activities, total distance traveled and stereotypic movements. Surface body temperatures recorded at 24 h and 48 h post-LPS dropped significantly in Fyn WT, but not in KO, mice. Importantly, endotoxemia-associated changes to levels of the serum pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), splenocyte apoptosis and inducible nitric oxide synthase (iNOS) production in hepatocytes were also significantly attenuated in Fyn KO mice. Likewise, pharmacologically inhibiting Fyn with 10 mg/kg dasatinib (oral) significantly attenuated LPS-induced increases in plasma TNF-α and IL-6 protein levels and hepatic pro-IL-1ß messenger ribonucleic acids (mRNAs). Collectively, these results indicate that genetic knockdown or pharmacological inhibition of Fyn dampens systemic inflammation, demonstrating for the first time that Fyn kinase plays a critical role in mediating the endotoxic inflammatory response.


Asunto(s)
Endotoxemia/enzimología , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Animales , Antiinflamatorios/farmacología , Apoptosis , Conducta Animal , Citocinas/metabolismo , Dasatinib/farmacología , Modelos Animales de Enfermedad , Endotoxemia/inducido químicamente , Endotoxemia/genética , Endotoxemia/prevención & control , Mediadores de Inflamación/sangre , Lipopolisacáridos , Hígado/metabolismo , Locomoción , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-fyn/deficiencia , Proteínas Proto-Oncogénicas c-fyn/genética , Bazo/metabolismo , Bazo/patología
18.
Sci Rep ; 10(1): 7640, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376941

RESUMEN

Chronic wasting disease (CWD) is a rapidly spreading prion disease of cervids, yet antemortem diagnosis, treatment, and control remain elusive. We recently developed an organotypic slice culture assay for sensitive detection of scrapie prions using ultrasensitive prion seeding. However, this model was not established for CWD prions due to their strong transmission barrier from deer (Odocoileus spp) to standard laboratory mice (Mus musculus). Therefore, we developed and characterized the ex vivo brain slice culture model for CWD, using a transgenic mouse model (Tg12) that expresses the elk (Cervus canadensis) prion protein gene (PRNP). We tested for CWD infectivity in cultured slices using sensitive seeding assays such as real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA). Slice cultures from Tg12, but not from prnp-/- mice, tested positive for CWD. Slice-generated CWD prions transmitted efficiently to Tg12 mice. Furthermore, we determined the activity of anti-prion compounds and optimized a screening protocol for the infectivity of biological samples in this CWD slice culture model. Our results demonstrate that this integrated brain slice model of CWD enables the study of pathogenic mechanisms with translational implications for controlling CWD.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Enfermedad Debilitante Crónica/etiología , Enfermedad Debilitante Crónica/patología , Animales , Biopsia , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inmunohistoquímica , Ratones , Ratones Noqueados , Técnicas de Cultivo de Tejidos , Enfermedad Debilitante Crónica/terapia
19.
Biochim Biophys Acta Mol Basis Dis ; 1866(4): 165533, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31442530

RESUMEN

Human-derived neuronal cell lines are progressively being utilized in understanding neurobiology and preclinical translational research as they are biologically more relevant than rodent-derived cells lines. The Lund human mesencephalic (LUHMES) cell line comprises human neuronal cells that can be differentiated to post-mitotic neurons and is increasingly being used as an in vitro model for various neurodegenerative diseases. A previously published 2-step differentiation procedure leads to the generation of post-mitotic neurons within 5-days, but only a small proportion (10%) of the total cell population tests positive for tyrosine hydroxylase (TH). Here we report on a novel differentiation protocol that we optimized by using a cocktail of neurotrophic factors, pleiotropic cytokines, and antioxidants to effectively generate proportionately more dopaminergic neurons within the same time period. Visualization and quantification of TH-positive cells revealed that under our new protocol, 25% of the total cell population expressed markers of dopaminergic neurons with the TH-positive neuron count peaking on day 5. These neurons showed spontaneous electrical activity and responded to known Parkinsonian toxins as expected by showing decreased cell viability and dopamine uptake and a concomitant increase in apoptotic cell death. Together, our results outline an improved method for generating a higher proportion of dopaminergic neurons, thus making these cells an ideal neuronal culture model of Parkinson's disease (PD) for translational research.


Asunto(s)
Diferenciación Celular , Neuronas Dopaminérgicas/metabolismo , Modelos Neurológicos , Células-Madre Neurales/metabolismo , Enfermedad de Parkinson/metabolismo , Investigación Biomédica Traslacional , Antígenos de Diferenciación/biosíntesis , Línea Celular , Neuronas Dopaminérgicas/patología , Humanos , Células-Madre Neurales/patología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia
20.
Mov Disord ; 35(2): 268-278, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31758740

RESUMEN

BACKGROUND: Identification of a peripheral biomarker is a major roadblock in the diagnosis of PD. Immunohistological identification of p-serine 129 α-synuclein in the submandibular gland tissues of PD patients has been recently reported. OBJECTIVE: We report on a proof-of-principle study for using an ultra-sensitive and specific, real-time quaking-induced conversion assay to detect pathological α-synuclein in the submandibular gland tissues of PD patients. METHODS: The α-synuclein real-time quaking-induced conversion assay was used to detect and quantify pathological α-synuclein levels in PD, incidental Lewy body disease, and control submandibular gland tissues as well as in formalin-fixed paraffin-embedded sections. RESULTS: We determined the quantitative seeding kinetics of pathological α-synuclein present in submandibular gland tissues from autopsied subjects using the α-synuclein real-time quaking-induced conversion assay. A total of 32 cases comprising 13 PD, 3 incidental Lewy body disease, and 16 controls showed 100% sensitivity and 94% specificity. Interestingly, both PD and incidental Lewy body disease tissues showed 100% concordance for elevated levels of pathological α-synuclein seeding activity compared to control tissues. End-point dilution kinetic analyses revealed that the submandibular gland had a wide dynamic range of pathological α-synuclein seeding activity. CONCLUSIONS: Our results are the first to demonstrate the utility of using the real-time quaking-induced conversion assay on peripherally accessible submandibular gland tissues and formalin-fixed paraffin-embedded tissue sections to detect PD-related pathological changes with high sensitivity and specificity. Additionally, the detection of seeding activity from incidental Lewy body disease cases containing immunohistochemically undetected pathological α-synuclein demonstrates the α-synuclein real-time quaking-induced conversion assay's potential utility for identifying prodromal PD in submandibular gland tissues. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/patología , Glándula Submandibular/patología , alfa-Sinucleína/análisis , Anciano , Autopsia/métodos , Biomarcadores/análisis , Femenino , Humanos , Enfermedad por Cuerpos de Lewy/patología , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...