Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(5): 145, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532224

RESUMEN

In this study, we tested the ability of lactobacilli and bifidobacteria strains to accumulate and biotransform sodium selenite into various selenium species, including selenium nanoparticles (SeNPs). Selenium tolerance and cytotoxicity of selenized strains towards human adenocarcinoma Caco-2 and HT29 cells were determined for all tested strains. Furthermore, the influence of selenium enrichment on the antioxidant activity of selenized strains and hydrophobicity of the bacterial cell surfaces were evaluated. Both hydrophobicity and antioxidant activity increased significantly in the selenized L. paracasei strain and decreased significantly in the selenized L. helveticus strain. The concentrations of 5 and 10 mg/L Na2SeO3 in the growth media were safer for Caco-2 and HT29 cell growth than higher concentrations. At higher concentrations (30, 50, and 100 mg/L), the cell viability was reduced. All the tested strains showed differences in antioxidant potential and hydrophobicity after selenium enrichment. In addition to selenocystine ​​and selenomethionine, the tested bacterial strains produced significant amounts of SeNPs. Our results show that the tested bacterial strains can accumulate and biotransform inorganic selenium, which allows them to become a potential source of selenium.


Asunto(s)
Selenio , Humanos , Selenio/metabolismo , Antioxidantes , Lactobacillus/metabolismo , Células CACO-2 , Suplementos Dietéticos
2.
Antioxidants (Basel) ; 10(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809515

RESUMEN

The selenium (Se) enrichment of yeasts and lactic acid bacteria (LAB) has recently emerged as a novel concept; the individual health effects of these beneficial microorganisms are combined by supplying the essential micronutrient Se in a more bioavailable and less toxic form. This study investigated the bioavailability of Se in the strains Enterococcus faecium CCDM 922A (EF) and Streptococcus thermophilus CCDM 144 (ST) and their respective Se-enriched forms, SeEF and SeST, in a CD (SD-Sprague Dawley) IGS rat model. Se-enriched LAB administration resulted in higher Se concentrations in the liver and kidneys of rats, where selenocystine was the prevalent Se species. The administration of both Se-enriched strains improved the antioxidant status of the animals. The effect of the diet was more pronounced in the heart tissue, where a lower glutathione reductase content was observed, irrespective of the Se fortification in LAB. Interestingly, rats fed diets with EF and SeEF had higher glutathione reductase activity. Reduced concentrations of serum malondialdehyde were noted following Se supplementation. Diets containing Se-enriched strains showed no macroscopic effects on the liver, kidneys, heart, and brain and had no apparent influence on the basic parameters of the lipid metabolism. Both the strains tested herein showed potential for further applications as promising sources of organically bound Se and Se nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...