Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 63(10): 2704-2709, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568555

RESUMEN

Monolayer molybdenum disulfide (M o S 2) has a weak light-matter interaction due to ultrathin thickness, which limits its potential application in lasing action. In this study, we propose a hybrid structure consisting of a nanocavity and Au nanoparticles to enhance the photon emission efficiency of monolayer M o S 2. Numerical simulations show that photoluminescence (PL) emission is significantly enhanced by introducing localized surface plasmon resonance (LSPR) to the proposed structure. Furthermore, an exciton energy band system is proposed to elucidate the physical mechanism of the PL process. By optimizing the spacer thickness, a high Purcell enhancement factor of 95 can be achieved. The results provided by this work pave the way to improve the PL efficiency of two-dimensional (2D) material, which constitutes a significant step towards the development of nanodevices such as nanolasers and sensors.

2.
Nanomaterials (Basel) ; 12(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36144966

RESUMEN

Electro-optical tuning metasurfaces are particularly attractive since they open up routes for dynamic reconfiguration. The electro-optic (EO) modulation strength essentially depends on the sensitivity to the EO-induced refractive index changes. In this paper, lithium niobate (LiNbO3) metasurfaces integrated with liquid crystals (LCs) are theoretically investigated. Cylinder arrays are proposed to support quasi-bound states in the continuum (quasi-BICs). The quasi-BIC resonances can significantly enhance the lifetime of photons and the local field, contributing to the EO-refractive index changes. By integrating metasurfaces with LCs, the combined influence of the LC reorientation and the Pockels electro-optic effect of LiNbO3 is leveraged to tune the transmitted wavelength and phase spectrum around the quasi-BIC wavelength, resulting in an outstanding tuning sensitivity up to Δλ/ΔV ≈ 0.6 nm/V and relieving the need of high voltage. Furthermore, the proposed structure can alleviate the negative influence of sidewall tilt on device performance. The results presented in this work can foster wide application and prospects for the implementation of tunable displays, light detection and ranging (LiDAR), and spatial light modulators (SLMs).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...