Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(1): e2206850120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577066

RESUMEN

Atomically dispersed catalysts have been shown highly active for preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). However, their stability has been less than ideal. We show here that the introduction of a structural component to minimize diffusion of the active metal center can greatly improve the stability without compromising the activity. Using an Ir dinuclear heterogeneous catalyst (DHC) as a study platform, we identify two types of oxygen species, interfacial and bridge, that work in concert to enable both activity and stability. The work sheds important light on the synergistic effect between the active metal center and the supporting substrate and may find broad applications for the use of atomically dispersed catalysts.


Asunto(s)
Monóxido de Carbono , Hidrógeno , Monóxido de Carbono/química , Oxidación-Reducción , Catálisis , Hidrógeno/química , Platino (Metal)/química
2.
J Am Chem Soc ; 143(40): 16538-16548, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34524811

RESUMEN

Nanoscale zerovalent iron (nZVI) is considered as a highly efficient material for sequestrating arsenite, but the origin of its high efficacy as well as the chemical transformations of arsenite during reaction is not well understood. Here, we report an in situ X-ray absorption spectroscopy (XAS) study to investigate the complex mechanism of nZVI reaction with arsenite under anaerobic conditions at the time scale from seconds to days. The time-resolved XAS analysis revealed a gradual oxidation of AsIII to AsV in the course of minutes to hours in both the solid and liquid phase for the high (above 0.5 g/L) nZVI dose system. When the reaction time increased up to 60 days, AsV became the dominant species. The quick-scanning extended X-ray absorption fine structure (QEAXFS) was introduced to discover the transient intermediate at the highly reactive stage, and a small red-shift in As K-edge absorption edge was observed. The QEAXFS combined with density functional theory (DFT) calculation suggested that the red-shift is likely due to the electron donation in a Fe-O-As complex and possible active sites of As sequestrations include Fe(OH)4 and 4-Fe cluster. This is the first time that the transient reaction intermediate was identified in the As-nZVI sequestration system at the fast-reacting early stage. This study also demonstrated usefulness of in situ monitoring techniques in environmental water research.


Asunto(s)
Arsenitos
3.
Phys Rev Lett ; 125(11): 116401, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32975957

RESUMEN

The exciton-phonon coupling in highly oriented pyrolytic graphite is studied using resonant inelastic x-ray scattering (RIXS) spectroscopy. With ∼70 meV energy resolution, multiple low energy excitations associated with coupling to phonons can be clearly resolved in the RIXS spectra. Using resonance dependence and the closed form for RIXS cross section without considering the intermediate state mixing of phonon modes, the dimensionless coupling constant g is determined to be 5 and 0.35, corresponding to the coupling strength of 0.42 eV+/-20 meV and 0.20 eV+/-20 meV, for zone center and boundary phonons, respectively. The reduced g value for the zone-boundary phonon may be related to its double resonance nature.

4.
RSC Adv ; 10(46): 27315-27321, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35516916

RESUMEN

The solvation shell structures of Ca2+ in aqueous and organic solutions probed by calcium L-edge soft X-ray absorption spectroscopy (XAS) and DFT/MD simulations show the coordination number of Ca2+ to be negatively correlated with the electrolyte concentration and the steric hindrance of the solvent molecule. In this work, the calcium L-edge soft XAS demonstrates its sensitivity to the surrounding chemical environment. Additionally, the total electron yield (TEY) mode is surface sensitive because the electron penetration depth is limited to a few nanometers. Thus this study shows its implications for future battery studies, especially for probing the electrolyte/electrode interface for electrochemical reactions under in situ/operando conditions.

5.
ACS Catal ; 8(5): 4278-4287, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29755829

RESUMEN

TiO2 has long been recognized as a stable and reusable photocatalyst for water splitting and pollution control. However, it is an inefficient anode material in the absence of photoactivation due to its low electron conductivity. To overcome this limitation, a series of conductive TiO2 nanotube array electrodes have been developed. Even though nanotube arrays are effective for electrochemical oxidation initially, deactivation is often observed within a few hours. To overcome the problem of deactivation, we have synthesized cobalt-doped Black-TiO2 nanotube array (Co-Black NTA) electrodes that are stable for more than 200 h of continuous operation in a NaClO4 electrolyte at 10 mA cm-2. Using X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, electron paramagnetic resonance spectroscopy, and DFT simulations, we are able to show that bulk oxygen vacancies (Ov) are the primary source of the enhanced conductivity of Co-Black. Cobalt doping both creates and stabilizes surficial oxygen vacancies, Ov, and thus prevents surface passivation. The Co-Black electrodes outperform dimensionally stable IrO2 anodes (DSA) in the electrolytic oxidation of organic-rich wastewater. Increasing the loading of Co leads to the formation of a CoO x film on top of Co-Black electrode. The CoO x /Co-Black composite electrode was found to have a lower OER overpotential (352 mV) in comparison to a DSA IrO2 (434 mV) electrode and a stability that is greater than 200 h in a 1.0 M KOH electrolyte at a current density of 10 mA cm-2.

6.
Chem Commun (Camb) ; 51(29): 6361-4, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25761526

RESUMEN

Through the addition of a solid-state precursor, a large-scale, transparent, and free-standing film of 1-D rutile/anatase TiO2 nanorod arrays can be fabricated by dynamically changing the acidity and concentrations of titanium and chloride ions, and creating anatase growth-friendly conditions.

7.
J Hazard Mater ; 291: 9-17, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-25748997

RESUMEN

Hierarchical branched ZnO nanorod (B-ZnR) arrays as an electrode for efficient photoelectrocatalytic degradation of paracetamol were grown on fluorine-doped tin oxide substrates using a solution route. The morphologic and structural studies show the ZnO trunks are single-crystalline hexagonal wurtzite ZnO with a [0001] growth direction and are densely covered by c-axis-oriented ZnO branches. The obvious enhancement in photocurrent response of the B-ZnR electrode was obtained than that in the ZnO nanoparticle (ZnO NP) electrode. For the photoelectrocatalytic degradation of paracetamol in 20 h, the conversion fraction of the drug increased from 32% over ZnO NP electrode to 62% over B-ZnR arrays with about 3-fold increase in initial reaction rate. The light intensity-dependent photoelectrocatalytic experiment indicated that the superior performance over the B-ZnR electrode was mainly ascribed to the increased specific surface area without significantly sacrificing the charge transport and pollutant diffusion efficiencies. Two aromatic intermediate compounds were observed and eventually converted into harmless carboxylic acids and ammonia. Hierarchical tree-like ZnO arrays can be considered effective alternatives to improve photoelectro degradation rates without the need for expensive additives.


Asunto(s)
Acetaminofén/química , Nanotubos , Óxido de Zinc/química , Catálisis , Residuos de Medicamentos , Electrodos , Oxidación-Reducción , Fotoquímica , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...