Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
2.
PeerJ ; 6: e4580, 2018.
Article En | MEDLINE | ID: mdl-29637023

Angiosperm-dominated floras of the Late Cretaceous are essential for understanding the evolutionary, ecological, and geographic radiation of flowering plants. The Late Cretaceous-early Paleogene Deccan Intertrappean Beds of India contain angiosperm-dominated plant fossil assemblages known from multiple localities in central India. Numerous monocots have been documented from these assemblages, providing a window into an important but poorly understood time in their diversification. One component of the Deccan monocot diversity is the genus Viracarpon, known from anatomically preserved infructescences. Viracarpon was first collected over a century ago and has been the subject of numerous studies. However, resolution of its three-dimensional (3D) morphology and anatomy, as well as its taxonomic affinities, has remained elusive. In this study we investigated the morphology and taxonomy of genus Viracarpon, combining traditional paleobotanical techniques and X-ray micro-computed tomography (µCT). Re-examination of type and figured specimens, 3D reconstructions of fruits, and characterization of structures in multiple planes of section using µCT data allowed us to resolve conflicting interpretations of fruit morphology and identify additional characters useful in refining potential taxonomic affinities. Among the four Viracarpon species previously recognized, we consider two to be valid (Viracarponhexaspermum and Viracarponelongatum), and the other two to be synonyms of these. Furthermore, we found that permineralized infructescences of Coahuilocarpon phytolaccoides from the late Campanian of Mexico correspond closely in morphology to V. hexaspermum. We argue that Viracarpon and Coahuilocarpon are congeneric and provide the new combination, Viracarpon phytolaccoides (Cevallos-Ferriz, Estrada-Ruiz & Perez-Hernandez) Matsunaga, S.Y. Smith, & Manchester comb. nov. The significant geographic disjunction between these two occurrences indicates that the genus Viracarpon was widespread and may be present in other Late Cretaceous assemblages. Viracarpon exhibits character combinations not present in any extant taxa and its affinities remain unresolved, possibly representing an extinct member of Alismatales. The character mosaic observed in Viracarpon and the broad distribution of the genus provide new data relevant to understanding early monocot evolution and suggest that the (thus far) largely invisible Late Cretaceous monocot diversification was characterized by enigmatic and/or stem taxa.

3.
Am J Bot ; 100(9): 1849-59, 2013 Sep.
Article En | MEDLINE | ID: mdl-24036414

PREMISE OF THE STUDY: Despite the inferred Cretaceous origin of the Vitaceae, fossils of the grape family are relatively young, with the oldest previously known examples limited to the Paleocene of Europe and North America. New fossil evidence indicates that the family was already present in India in the Late Cretaceous (Maastrichtian), about 10-15 million years before the tectonic collision of India with Eurasia. • METHODS: Fruits and seeds were investigated by serial sections and peels of chert from the Deccan Intertrappean beds of central India, and compared anatomically with those of extant genera. • KEY RESULTS: Indovitis chitaleyae gen. et sp. n. is described based on immature fruits bearing four to six seeds, and isolated mature seeds. The seeds possess paired ventral infolds and a dorsal chalaza, features diagnostic of the order Vitales. Characters of chalaza shape, infold morphology, and seed coat anatomy place I. chitaleyae within Vitaceae and favor a phylogenetic position either sister to the Vitis-Ampelocissus clade or sister to the Ampelopsis-Clematicissus-Rhoicissus clade. • CONCLUSIONS: Presence of the oldest known vitaceous fossils in the latest Cretaceous of India indicates a previously undocumented Gondwanan history and a possible southern hemisphere origin for the Vitales. An "out-of-India" scenario might explain the relatively sudden appearance of diverse Vitaceae in the Late Paleocene and Early Eocene of the Northern Hemisphere.


Fossils , Fruit/classification , Seeds/classification , Vitaceae/classification , Biological Evolution , Cluster Analysis , Fruit/anatomy & histology , Fruit/genetics , Fruit/history , History, Ancient , India , Paleontology , Phylogeography , Seeds/anatomy & histology , Seeds/genetics , Vitaceae/anatomy & histology , Vitaceae/genetics
...