Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
BMC Plant Biol ; 24(1): 221, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38539080

Most vegetable crops are severely affected by the uptake of heavy metals from the soil. Heavy metals in vegetable bodies generate reactive oxygen species (ROS) that unbalance the antioxidant defense system. This study was initiated to determine the physiological and biochemical characteristics of spinach plants grown on soil contaminated with heavy metals and responding to Bacillus cereus and Bacillus aerius were isolated from soil contaminated with heavy metals. Heavy metal contamination led to a significant reduction in seed germination, seedling biomass, protein, and total nitrogen content of spinach plants grown in contaminated soils compared to control soils. In contrast, a significant increase in the content of metallothioneins and antioxidant enzymes was observed. Plants inoculated with B. cereus and B. aerius significantly reduced the oxidative stress induced by heavy metals by improving seed germination (%), seedling growth, nitrogen, and protein content. The content of metallothioneins and the activities of antioxidant enzymes were reduced in spinach plants grown from seeds inoculated with bacterial strains. In addition, plants inoculated with, B. cereus and B. aerius showed greater stomata opening than plants grown on soil contaminated with heavy metals, whose stomata were almost closed. These results suggested that both bacterial strains enhanced plant growth by reducing oxidative stress caused by metals.


Loratadine/analogs & derivatives , Metals, Heavy , Soil Pollutants , Spinacia oleracea , Antioxidants/metabolism , Metals, Heavy/toxicity , Oxidative Stress , Bacteria/metabolism , Soil/chemistry , Plants/metabolism , Nitrogen/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism
2.
BMC Plant Biol ; 24(1): 108, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38347449

Soil pollution with heavy metals has grown to be a big hassle, leading to the loss in farming production particularly in developing countries like Pakistan, where no proper channel is present for irrigation and extraction of these toxic heavy metals. The present study aims to ameliorate the damages caused by heavy metal ions (Hg-Mercury) on rapeseed (Brassica napus L.) via a growth regulator (α-tocopherol 150 mg/L) and thermopriming technique at 4 °C and 50 °C to maintain plant agronomical and physiological characteristics. In pot experiments, we designed total of 11 treatments viz.( T0 (control), T1 (Hg4ppm), T2 (Hg8ppm), T3 (Hg4ppm + 4 °C), T4 (Hg4ppm + 4 °C + tocopherol (150 m/L)), T5 (Hg4ppm + 50 °C), T6 (Hg4ppm + 50 °C + tocopherol (150 mg/L)), T7 (Hg8ppm + 4 °C), T8 (Hg8ppm + 4 °C + tocopherol (150 mg/L)), T9 (Hg8ppm + 50 °C), T10 (Hg8ppm + 50 °C + tocopherol (150 mg/L) the results revealed that chlorophyll content at p < 0.05 with growth regulator and antioxidant enzymes such as catalase, peroxidase, and malondialdehyde enhanced up to the maximum level at T5 = Hg4ppm + 50 °C (50 °C thermopriming under 4 ppm mercuric chloride stress), suggesting that high temperature initiate the antioxidant system to reduce photosystem damage. However, protein, proline, superoxide dismutase at p < 0.05, and carotenoid, soluble sugar, and ascorbate peroxidase were increased non-significantly (p > 0.05) 50 °C thermopriming under 8 ppm high mercuric chloride stress (T9 = Hg8ppm + 50 °C) representing the tolerance of selected specie by synthesizing osmolytes to resist oxidation mechanism. Furthermore, reduction in % MC (moisture content) is easily improved with foliar application of α-tocopherol and 50 °C thermopriming and 4 ppm heavy metal stress at T6 = Hg4ppm + 50 °C + α-tocopherol (150 mg/L), with a remarkable increase in plant vigor and germination energy. It has resulted that the inhibitory effect of only lower concentration (4 ppm) of heavy metal stress was ameliorated by exogenous application of α-tocopherol and thermopriming technique by synthesizing high levels of proline and antioxidant activities in maintaining seedling growth and development on heavy metal contaminated soil.


Brassica napus , Metals, Heavy , Soil Pollutants , Antioxidants/metabolism , alpha-Tocopherol/pharmacology , alpha-Tocopherol/metabolism , Brassica napus/metabolism , Mercuric Chloride/toxicity , Mercuric Chloride/metabolism , Tocopherols/metabolism , Tocopherols/pharmacology , Metals, Heavy/metabolism , Proline/metabolism , Soil Pollutants/metabolism
5.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 04.
Article En | MEDLINE | ID: mdl-37895884

Nanotechnology is one of the most advance and multidisciplinary fields. Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. The use of plants and their extracts is one of the most valuable methods towards rapid and single-step protocol preparation for various nanoparticles, keeping intact "the green principles" over the conventional ones and proving their dominance for medicinal importance. A facile and eco-friendly technique for synthesizing silver nanoparticles has been developed by using the latex of Euphorbia royleana as a bio-reductant for reducing Ag+ ions in an aqueous solution. Various characterization techniques were employed to validate the morphology, structure, and size of nanoparticles via UV-Vis spectroscopy, XRD, SEM, and EDS. FTIR spectroscopy validates different functional groups associated with biomolecules stabilizing/capping the silver nanoparticles, while SEM and XRD revealed spherical nanocrystals with FCC geometry. The results revealed that latex extract-mediated silver nanoparticles (LER-AgNPs) exhibited promising antibacterial activity against both gram-positive and -negative bacterial strains (Bacillus pumilus, Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, and Streptococcus viridians). Both latex of E. royleana and LER-AgNPs were found to be potent in scavenging DPPH free radicals with respective EC50s and EC70s as 0.267% and 0.518% and 0.287% and 0.686%. ROSs produced in the body damage tissue and cause inflammation in oxidative stress-originated diseases. H2O2 and OH* scavenging activity increased with increasing concentrations (20-100 µg/mL) of LER-AgNPs. Significant reestablishment of ALT, AST, ALP, and bilirubin serum levels was observed in mice intoxicated with acetaminophen (PCM), revealing promising hepatoprotective efficacy of LER-AgNPs in a dose-dependent manner.

6.
ACS Omega ; 8(37): 33266-33279, 2023 Sep 19.
Article En | MEDLINE | ID: mdl-37744846

Climatic changes have a direct negative impact on the growth, development, and productivity of crops. The water potential (ψ) and temperature (T) are important limiting factors that influence the rate of seed germination and growth indices. To examine how the germination of seed responds to changes in water potential and temperature, the hydrotime model and hydrothermal model (HTT) have been employed. The HTT calculates the concept of germination time across temperatures, between Tb-To, with alteration, and between Tb-Tc, in supra-optimal ranges. The seeds of Cucumis melo L. were germinated in the laboratory for a hydro-thermal time experiment. Seeds were sown in Petri dishes containing a double-layered filter paper at different osmotic potentials (0, -0.2, -0.4, -0.6, and -0.8 MPa) by providing PEG 6000 (drought stress enhancer) at different temperatures (15, 20, 25, 30, and 35 °C). The controlled replicate was treated with 10 mL of distilled water and the rest with 10 mL of PEG solution. Results indicated that the seed vigor index (SVI-II) was highest at 15 °C with 0 MPa and lowest at 30 °C with -0.2 MPa. However, the highest activity was shown at 15 °C by catalase (CAT) and guaiacol peroxidase (GPX) at (-0.6 MPa), while the lowest values of CAT and GPX were recorded for control at 35 °C with -0.8 MPa at 35 °C, respectively. Germination energy was positively correlated with germination index (GI), germination percentage (G%), germination rate index, seed vigor index-I (SVI-I), mean moisture content (MMC), and root shoot ratio (RSR) and had a negative correlation with mean germination rate, percent moisture content of shoot and root, CAT, superoxide dismutase, peroxidase ascorbate peroxidase, and GPX. In conclusion, thermal and hydrotime models correctly predicted muskmelon germination time in response to varying water potential and temperature. The agronomic attributes were found to be maximum at 30 °C and minimum at 15 °C.

7.
BMC Chem ; 17(1): 128, 2023 Sep 28.
Article En | MEDLINE | ID: mdl-37770921

In this study, a polar extract of Aconitum lycoctonum L. was used for the synthesis of silver nanoparticles (AgNPs), followed by their characterization using different techniques and evaluation of their potential as antioxidants, amylase inhibitors, anti-inflammatory and antibacterial agents. The formation of AgNPs was detected by a color change, from transparent to dark brown, within 15 min and a surface resonance peak at 460 nm in the UV-visible spectrum. The FTIR spectra confirmed the involvement of various biomolecules in the synthesis of AgNPs. The average diameter of these spherical AgNPs was 67 nm, as shown by the scanning electron micrograph. The inhibition zones showed that the synthesized nanoparticles inhibited the growth of Gram-positive and negative bacteria. FRAP and DPPH assays were used to demonstrate the antioxidant potential of AgNPs. The highest value of FRAP (50.47% AAE/mL) was detected at a concentration of 90 ppm and a DPPH scavenging activity of 69.63% GAE was detected at a concentration of 20 µg/mL of the synthesized AgNPs. 500 µg/mL of the synthesized AgNPs were quite efficient in causing 91.78% denaturation of ovalbumin. The AgNPs mediated by A. lycoctonum also showed an inhibitory effect on α-amylase. Therefore, AgNPs synthesized from A. lycoctonum may serve as potential candidates for antibacterial, antioxidant, anti-inflammatory, and antidiabetic agents.

8.
Arch Pharm (Weinheim) ; 356(9): e2300263, 2023 Sep.
Article En | MEDLINE | ID: mdl-37434089

Six extracts (water, ethanol, ethanol-water, ethyl acetate, dichloromethane, and n-hexane) of Astragalus caraganae were studied for their biological activities and bioactive contents. Based on high-performance liquid chromatography-mass spectrometry (HPLC-MS), the ethanol-water extract yielded the highest total bioactive content (4242.90 µg g-1 ), followed by the ethanol and water extracts (3721.24 and 3661.37 µg g-1 , respectively), while the least total bioactive content was yielded by the hexane extract, followed by the dichloromethane and ethyl acetate extracts (47.44, 274.68, and 688.89 µg g-1 , respectively). Rutin, p-coumaric, chlorogenic, isoquercitrin, and delphindin-3,5-diglucoside were among the major components. Unlike the dichloromethane extracts, all the other extracts showed radical scavenging ability in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay (8.73-52.11 mg Trolox equivalent [TE]/g), while all extracts displayed scavenging property in the 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assay (16.18-282.74 mg TE/g). The extracts showed antiacetylcholinesterase (1.27-2.73 mg galantamine equivalent [GALAE]/g), antibutyrylcholinesterase (0.20-5.57 mg GALAE/g) and antityrosinase (9.37-63.56 mg kojic acid equivalent [KAE]/g) effects. The molecular mechanism of the H2 O2 -induced oxidative stress pathway was aimed to be elucidated by applying ethanol, ethanol/water and water extracts at 200 µg/mL concentration to human dermal cells (HDFs). A. caraganae in HDF cells had neither a cytotoxic nor genotoxic effect but could have a cytostatic effect in increasing concentrations. The findings have allowed a better insight into the pharmacological potential of the plant, with respect to their chemical entities and bioactive contents, as well as extraction solvents and their polarity.

9.
Molecules ; 28(13)2023 Jun 28.
Article En | MEDLINE | ID: mdl-37446722

Plants are sessile and mostly exposed to various environmental stresses which hamper plant growth, development, and significantly decline its production. Drought stress is considered to be one of the most significant limiting factors for crop plants, notably in arid and semi-arid parts the world. Therefore, the present study aimed to evaluate the potential impact of different concentrations (10, 100, and 200 µg/mL) of kinetin capped zinc oxide nanoparticles (Kn-ZnONPs) on Vigna radiata (L.) R. Wilczek under varying levels (5%, 10%, 15%) of PEG-induced drought stress. ZnONPs were synthesized by a co-precipitation method using Zinc acetate as a precursor at pH-12, incinerated to 500 °C, and kinetin was used as a surface functionalizing agent. The resulting Kn-ZnONPs were characterized by various contemporary analytical techniques, including SEM, SEM-EDS, XRD, DLS, and Zeta potential and IR spectroscopy. Crystalline Kn-ZnONPs, with a zeta potential of 27.8 mV and a size of 67.78 nm, of hexagonal wurtzite structure and vibrational stretches associated with N-H, C-O, C-N, etc., were confirmed. PEG-induced drought stress significantly reduced the growth of V. radiata by declining the chlorophyll and carotenoid contents. Moreover, a significant decrease in the levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), soluble sugar contents, proline, protein contents, phenol, and tannin were observed compared to the control. However, the exogenous application of Kn-ZnONPs ameliorated all photosynthetic parameters by up-regulating the antioxidant defense system through the promotion of SOD, POD, CAT, and lipid peroxidation levels. The biochemical parameters, such as proteins, soluble sugars, and proline, were observed to be maximum in plants treated with 200 µg/mL Kn-ZnONPs under 5% drought stress. The application of Kn-ZnONPs also enhanced the total phenol contents, flavonoid, and tannin contents. In conclusion, the findings of this study demonstrate that the exogenous application of Kn-ZnONPs provides beneficial effects to V. radiata by attenuating the damaging effects of drought stress through the up-regulation of the antioxidant defense system and osmolytes. These results suggest that Kn-ZnONPs have potential as a novel approach to improve crop productivity under drought stress conditions.


Fabaceae , Nanoparticles , Vigna , Zinc Oxide , Antioxidants/pharmacology , Vigna/metabolism , Kinetin/pharmacology , Zinc Oxide/pharmacology , Droughts , Fabaceae/metabolism , Peroxidases/metabolism , Superoxide Dismutase/metabolism , Peroxidase/metabolism , Proline/metabolism
10.
ACS Omega ; 8(23): 20488-20504, 2023 Jun 13.
Article En | MEDLINE | ID: mdl-37323381

The threat of varying global climates has greatly driven the attention of scientists, as climate change increases the odds of worsening drought in many parts of Pakistan and the world in the decades ahead. Keeping in view the forthcoming climate change, the present study aimed to evaluate the influence of varying levels of induced drought stress on the physiological mechanism of drought resistance in selected maize cultivars. The sandy loam rhizospheric soil with moisture content 0.43-0.5 g g-1, organic matter (OM) 0.43-0.55 g/kg, N 0.022-0.027 g/kg, P 0.028-0.058 g/kg, and K 0.017-0.042 g/kg was used in the present experiment. The findings showed that a significant drop in the leaf water status, chlorophyll content, and carotenoid content was linked to an increase in sugar, proline, and antioxidant enzyme accumulation at p < 0.05 under induced drought stress, along with an increase in protein content as a dominant response for both cultivars. SVI-I & II, RSR, LAI, LAR, TB, CA, CB, CC, peroxidase (POD), and superoxide dismutase (SOD) content under drought stress were studied for variance analysis in terms of interactions between drought and NAA treatment and were found significant at p < 0.05 after 15 days. It has been found that the exogenous application of NAA alleviated the inhibitory effect of only short-term water stress, but yield loss due to long-term osmotic stress will not be faced employing growth regulators. Climate-smart agriculture is the only approach to reduce the detrimental impact of global fluctuations, such as drought stress, on crop adaptability before they have a significant influence on world crop production.

11.
Molecules ; 27(15)2022 Aug 06.
Article En | MEDLINE | ID: mdl-35956963

The bioactive content, antioxidant properties, and enzyme inhibition properties of extracts of Alcea fasciculiflora from Turkey prepared with different solvents (water, methanol, ethyl acetate) and extraction methods (maceration, soxhlet, homogenizer assisted extraction, and ultrasound assisted extraction) were examined in this study. UHPLC-HRMS analysis detected or annotated a total of 50 compounds in A. fasciculiflora extracts, including 18 hydroxybenzoic and hydroxycinnamic acids, 7 Hexaric acids, 7 Coumarins, 15 Flavonoids, and 3 hydroxycinnamic acid amides. The extracts had phenolic and flavonoid levels ranging from 14.25 to 24.87 mg GAE/g and 1.68 to 25.26 mg RE/g, respectively, in the analysis. Both DPPH and ABTS tests revealed radical scavenging capabilities (between 2.63 and 35.33 mg TE/g and between 13.46 and 76.27 mg TE/g, respectively). The extracts had reducing properties (CUPRAC: 40.38-78 TE/g and FRAP: 17.51-42.58 TE/g). The extracts showed metal chelating activity (18.28-46.71 mg EDTAE/g) as well as total antioxidant capacity (phosphomolybdenum test) (0.90-2.12 mmol TE/g). DPPH, ABTS, FRAP, and metal chelating tests indicated the water extracts to be the best antioxidants, while the ethyl acetate extracts had the highest overall antioxidant capacity regardless of the extraction technique. Furthermore, anti-acetylcholinesterase activity was identified in all extracts (0.17-2.80 mg GALAE/g). The water extracts and the ultrasound-assisted ethyl acetate extract were inert against butyrylcholinesterase, but the other extracts showed anti-butyrylcholinesterase activity (1.17-5.80 mg GALAE/g). Tyrosine inhibitory action was identified in all extracts (1.79-58.93 mg KAE/g), with the most effective methanolic extracts. Only the ethyl acetate and methanolic extracts produced by maceration and homogenizer aided extraction showed glucosidase inhibition (0.11-1.11 mmol ACAE/g). These findings showed the overall bioactivity of the different extracts of A. fasciculiflora and provided an overview of the combination of solvent type and extraction method that could yield bioactive profile and pharmacological properties of interest and hence, could be a useful reference for future studies on this species.


Plant Extracts , Solvents , Acetates/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Methanol/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Solvents/chemistry , Turkey , Water/chemistry
12.
Chem Biodivers ; 18(10): e2100356, 2021 Oct.
Article En | MEDLINE | ID: mdl-34398524

The aim of the present study was to quantify selected phenolic compounds, determine antioxidant activity and enzyme inhibitory effects of the aerial parts of Alkanna trichophylla Hub.-Mor. (A. trichophylla) and Convolvulus galaticus Rost.ex Choisy (C. galaticus) extracts prepared by homogenizer-assisted extraction (HAE), maceration (MAC) and infusion techniques. This is the first time such study has been designed to validate the phytochemical composition and bioactivity of these plants. Multivariate analysis was conducted on collected data. Rutin and caffeoylquinic acid derivatives were the most significant compounds in A. trichophylla and C. galaticus, respectively. The highest antioxidant activity of A. trichophylla was mostly exhibited by HAE/methanolic extracts as determined by DPPH, ABTS, FRAP (51.39, 112.70 and 145.73 mg TE/g, respectively) and phosphomolybdenum (2.05 mmol TE/g) assays. However, significant antioxidant activities varied within the extracts of C. galaticus. HAE/methanolic extract of A. trichophylla significantly depressed AChE (2.70 mg GALAE/g), BChE (5.53 mg GALAE/g) and tyrosinase (26.34 mg KAE/g) activities and that of C. galaticus inhibited AChE (2.04 mg GALAE/g), tyrosinase (31.25 mg KAE/g) and α-amylase (0.53 mmol ACAE/g) activities significantly. We concluded that HAE was the most efficient extraction technique as high yield of compounds and promising bioactivities were recorded from extracts prepared. Multivariate analysis showed that types of solvents influenced recovery of compounds and biological activities. This research study can be used as one methodological starting point for further investigation on these plants as all results are clearly promising and open the door to further research challenges such as cytotoxicity evaluation, molecular docking analysis, and more screening of pharmacological actions.


Antioxidants/pharmacology , Boraginaceae/chemistry , Convolvulus/chemistry , Enzyme Inhibitors/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Acetylcholinesterase/metabolism , Agaricales/enzymology , Antioxidants/chemistry , Antioxidants/isolation & purification , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Butyrylcholinesterase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Saccharomyces cerevisiae/enzymology , Sulfonic Acids/antagonists & inhibitors , Turkey , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism
...