Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Adv Drug Deliv Rev ; 204: 115122, 2024 Jan.
Article En | MEDLINE | ID: mdl-37935318

Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.


Biocompatible Materials , Neoplasms , Humans , Neoplasms/therapy
2.
Adv Sci (Weinh) ; : e2202393, 2022 Nov 14.
Article En | MEDLINE | ID: mdl-36373708

Recent clinical studies show activating multiple innate immune pathways drives robust responses in infection and cancer. Biomaterials offer useful features to deliver multiple cargos, but add translational complexity and intrinsic immune signatures that complicate rational design. Here a modular adjuvant platform is created using self-assembly to build nanostructured capsules comprised entirely of antigens and multiple classes of toll-like receptor agonists (TLRas). These assemblies sequester TLR to endolysosomes, allowing programmable control over the relative signaling levels transduced through these receptors. Strikingly, this combinatorial control of innate signaling can generate divergent antigen-specific responses against a particular antigen. These assemblies drive reorganization of lymph node stroma to a pro-immune microenvironment, expanding antigen-specific T cells. Excitingly, assemblies built from antigen and multiple TLRas enhance T cell function and antitumor efficacy compared to ad-mixed formulations or capsules with a single TLRa. Finally, capsules built from a clinically relevant human melanoma antigen and up to three TLRa classes enable simultaneous control of signal transduction across each pathway. This creates a facile adjuvant design platform to tailor signaling for vaccines and immunotherapies without using carrier components. The modular nature supports precision juxtaposition of antigen with agonists relevant for several innate receptor families, such as toll, STING, NOD, and RIG.

3.
Front Immunol ; 13: 843355, 2022.
Article En | MEDLINE | ID: mdl-35359943

Biomaterials hold great promise for vaccines and immunotherapy. One emerging biomaterials technology is microneedle (MNs) delivery. MNs are arrays of micrometer-sized needles that are painless and efficiently deliver cargo to the specialized immunological niche of the skin. MNs typically do not require cold storage and eliminate medical sharps. Nearly all materials exhibit intrinsic properties that can bias immune responses toward either pro-immune or inhibitory effects. Thus, because MNs are fabricated from degradable polymers to enable cargo loading and release, understanding the immunological profiles of these matrices is essential to enable new MN vaccines and immunotherapies. Additionally, understanding the mechanical properties is important because MNs must penetrate the skin and conform to a variety of skin or tissue geometries. Here we fabricated MNs from important polymer classes - including extracellular matrix biopolymers, naturally-derived polymers, and synthetic polymers - with both high- and low-molecular-weights (MW). We then characterized the mechanical properties and intrinsic immunological properties of these designs. The library of polymer MNs exhibited diverse mechanical properties, while causing only modest changes in innate signaling and antigen-specific T cell proliferation. These data help inform the selection of MN substrates based on the mechanical and immunological requirements needed for a specific vaccine or immunotherapy application.


Needles , Vaccines , Biocompatible Materials , Immunotherapy , Polymers/chemistry
4.
DNA Cell Biol ; 41(1): 25-29, 2022 Jan.
Article En | MEDLINE | ID: mdl-34958232

The coronavirus disease 2019 (COVID-19) public health crisis has reached critical mass, but interdisciplinary research efforts have provided the global community with the first effective medical intervention to fight the pandemic-COVID-19 vaccines. Two of the vaccines approved for use in the United States and Europe deliver nucleic acid in the form of mRNA, the success of which would not be possible without biomaterials. Lipid nanoparticle (LNP)-based mRNA vaccines, discussed in this perspective, protect nucleic acids from degradation and deliver cargo directly to the intracellular compartment of cells where it is translated into the antigenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein that triggers protective immune responses. Despite success of LNP-based mRNA vaccines thus far, the pandemic has highlighted the need for emerging technologies that enable rapid development and increased accessibility to vaccination. Microneedle arrays, also discussed in this study, provide features that could lower barriers to vaccine access in resource-poor regions. The ability to exchange antigens within arrays could also facilitate swift vaccine deployment as public health needs evolve (e.g., in response to SARS-CoV-2 variants or entirely new pathogens). Therefore, the COVID-19 pandemic has spotlighted the readiness and value of biomaterials for the prevention and management of disease outbreaks.


COVID-19 Vaccines , COVID-19
5.
Cell Rep ; 37(2): 109804, 2021 10 12.
Article En | MEDLINE | ID: mdl-34644563

Patients with activated phosphatidylinositol 3-kinase delta (PI3Kδ) syndrome (APDS) present with sinopulmonary infections, lymphadenopathy, and cytomegalvirus (CMV) and/or Epstein-Barr virus (EBV) viremia, yet why patients fail to clear certain chronic viral infections remains incompletely understood. Using patient samples and a mouse model (Pik3cdE1020K/+ mice), we demonstrate that, upon activation, Pik3cdE1020K/+ CD8+ T cells exhibit exaggerated features of effector populations both in vitro and after viral infection that are associated with increased Fas-mediated apoptosis due to sustained FoxO1 phosphorylation and Fasl derepression, enhanced mTORC1 and c-Myc signatures, metabolic perturbations, and an altered chromatin landscape. Conversely, Pik3cdE1020K/+ CD8+ cells fail to sustain expression of proteins critical for central memory, including TCF1. Strikingly, activated Pik3cdE1020K/+ CD8+ cells exhibit altered transcriptional and epigenetic circuits characterized by pronounced interleukin-2 (IL-2)/STAT5 signatures and heightened IL-2 responses that prevent differentiation to memory-like cells in IL-15. Our data position PI3Kδ as integrating multiple signaling nodes that promote CD8+ T cell effector differentiation, providing insight into phenotypes of patients with APDS.


CD8-Positive T-Lymphocytes/enzymology , Chromatin Assembly and Disassembly , Chromatin/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , Immunologic Memory , Primary Immunodeficiency Diseases/enzymology , Transcription, Genetic , Virus Diseases/enzymology , Adolescent , Adult , Animals , Apoptosis , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Case-Control Studies , Child , Chromatin/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/immunology , Disease Models, Animal , Enzyme Activation , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , Female , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Signal Transduction , Virus Diseases/genetics , Virus Diseases/immunology
6.
Nano Lett ; 21(9): 3762-3771, 2021 05 12.
Article En | MEDLINE | ID: mdl-33881872

Outcomes during immunotherapy are impacted not only by the specific therapeutic signals and pharmacodynamics, but also by the biophysical forms in which signals are delivered. This integration is determinative in autoimmunity because the disease is caused by immune dysregulation and inflammation. Unfortunately, the links between nanomaterial design, biophysical properties, and immune regulation are poorly defined. Here we designed cationic peptide antigens with defined charge distributions and then used electrostatics to assemble these peptides into complexes with anionic regulatory cues. We first show complexes induce antigen-specific tolerance during myelin-driven autoimmunity. We next show the affinity between these immune cues is controlled by charge balance and that affinity confers distinct biophysical properties important in immunological processing, including antigen availability. The underlying binding affinities between the self-assembled signals influences inflammatory gene expression in dendritic cells and antigen-specific regulatory outcomes in self-reactive transgenic T cells. This granular understanding of nanomaterial-immune interactions contributes to a more rational immunotherapy design.


Immunotherapy , T-Lymphocytes , Antigens , Immunity , Peptides
7.
ACS Nano ; 15(3): 4305-4320, 2021 03 23.
Article En | MEDLINE | ID: mdl-33645967

Autoimmune diseases like multiple sclerosis (MS), type 1 diabetes, and lupus occur when the immune system attacks host tissue. Immunotherapies that promote selective tolerance without suppressing normal immune function are of tremendous interest. Here, nanotechnology was used for rational assembly of peptides and modulatory immune cues into immune complexes. Complexes containing self-peptides and regulatory nucleic acids reverse established paralysis in a preclinical MS model. Importantly, mice responding to immunotherapy maintain healthy, antigen-specific B and T cell responses during a foreign antigen challenge. A therapeutic library isolating specific components reveals that regulatory nucleic acids suppress inflammatory genes in innate immune cells, while disease-matched peptide sequences control specificity of tolerance. Distinct gene expression profiles in cells and animals are associated with the immune signals administered in particulate and soluble forms, highlighting the impact of biophysical presentation of signals. This work provides insight into the rational manipulation of immune signaling to drive tolerance.


Autoimmune Diseases , Diabetes Mellitus, Type 1 , Animals , Autoimmune Diseases/drug therapy , Cues , Immune Tolerance , Mice , T-Lymphocytes , T-Lymphocytes, Regulatory
8.
Mol Metab ; 37: 100981, 2020 07.
Article En | MEDLINE | ID: mdl-32283081

OBJECTIVE: In individuals with mitochondrial disease, respiratory viral infection can result in metabolic decompensation with mitochondrial hepatopathy. Here, we used a mouse model of liver-specific Complex IV deficiency to study hepatic allostasis during respiratory viral infection. METHODS: Mice with hepatic cytochrome c oxidase deficiency (LivCox10-/-) were infected with aerosolized influenza, A/PR/8 (PR8), and euthanized on day five after infection following three days of symptoms. This time course is marked by a peak in inflammatory cytokines and mimics the timing of a common clinical scenario in which caregivers may first attempt to manage the illness at home before seeking medical attention. Metabolic decompensation and mitochondrial hepatopathy in mice were characterized by serum hepatic testing, histology, electron microscopy, biochemistry, metabolomics, and bioenergetic profiling. RESULTS: Following influenza infection, LivCox10-/- mice displayed marked liver disease including hepatitis, enlarged mitochondria with cristae loss, and hepatic steatosis. This pathophysiology was associated with viremia. Primary hepatocytes from LivCox10-/- mice cocultured with WT Kupffer cells in the presence of PR8 showed enhanced lipid accumulation. Treatment of hepatocytes with recombinant TNFα implicated Kupffer cell-derived TNFα as a precipitant of steatosis in LivCox10-/- mice. Eliminating Kupffer cells or blocking TNFα in vivo during influenza infection mitigated the steatosis and mitochondrial morphologic changes. CONCLUSIONS: Taken together, our data shift the narrative of metabolic decompensation in mitochondrial hepatopathy beyond the bioenergetic costs of infection to include an underlying susceptibility to immune-mediated damage. Moreover, our work suggests that immune modulation during metabolic decompensation in mitochondrial disease represents a future viable treatment strategy needing further exploration.


Cytochrome-c Oxidase Deficiency/physiopathology , Liver/metabolism , Mitochondrial Diseases/physiopathology , Allostasis/physiology , Animals , Disease Models, Animal , Fatty Liver/metabolism , Female , Hepatitis/metabolism , Hepatitis/pathology , Hepatocytes/metabolism , Kupffer Cells/metabolism , Liver Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondrial Diseases/metabolism , Orthomyxoviridae Infections
9.
Front Immunol ; 9: 1758, 2018.
Article En | MEDLINE | ID: mdl-30116245

Activated phosphoinositide 3-kinase delta syndrome (APDS), also known as p110 delta-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency (PASLI), is an autosomal dominant primary human immunodeficiency (PID) caused by heterozygous gain-of-function mutations in PIK3CD, which encodes the p110δ catalytic subunit of PI3K. This recently described PID is characterized by diverse and heterogeneous clinical manifestations that include recurrent respiratory infections, lymphoproliferation, progressive lymphopenia, and defective antibody responses. A major clinical manifestation observed in the NIH cohort of patients with PIK3CD mutations is chronic Epstein-Barr virus (EBV) and/or cytomegalovirus viremia. Despite uncontrolled EBV infection, many APDS/PASLI patients had normal or higher frequencies of EBV-specific CD8+ T cells. In this review, we discuss data pertaining to CD8+ T cell function in APDS/PASLI, including increased cell death, expression of exhaustion markers, and altered killing of autologous EBV-infected B cells, and how these and other data on PI3K provide insight into potential cellular defects that prevent clearance of chronic infections.


CD8-Positive T-Lymphocytes/immunology , Class I Phosphatidylinositol 3-Kinases/genetics , Epstein-Barr Virus Infections/immunology , Immunologic Deficiency Syndromes/immunology , Adolescent , Adult , Animals , Cell Differentiation , Cell Survival , Cellular Senescence , Child , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/immunology , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/immunology , Humans , Immunologic Deficiency Syndromes/drug therapy , Immunologic Deficiency Syndromes/genetics , Mice , Mutation , Primary Immunodeficiency Diseases , Pyridines/pharmacology , Pyridines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Young Adult
10.
Metabolism ; 81: 97-112, 2018 04.
Article En | MEDLINE | ID: mdl-29162500

Immunometabolism aims to define the role of intermediary metabolism in immune cell function, with bioenergetics and the mitochondria recently taking center stage. To date, the medical literature on mitochondria and immune function extols the virtues of mouse models in exploring this biologic intersection. While the laboratory mouse has become a standard for studying mammalian biology, this model comprises part of a comprehensive approach. Humans, with their broad array of inherited phenotypes, serve as a starting point for studying immunometabolism; specifically, patients with mitochondrial disease. Using this top-down approach, the mouse as a model organism facilitates further exploration of the consequences of mutations involved in mitochondrial maintenance and function. In this review, we will discuss the emerging phenotype of immune dysfunction in mitochondrial disease as a model for understanding the role of the mitochondria in immune function in available mouse models.


Immune System/physiology , Mitochondrial Diseases/immunology , Animals , Calcium/metabolism , Cell Fusion , DNA, Mitochondrial/physiology , Disease Models, Animal , Humans , Mice , Oxidative Phosphorylation
11.
Proc Natl Acad Sci U S A ; 114(32): E6585-E6594, 2017 08 08.
Article En | MEDLINE | ID: mdl-28716933

CD8+ cytotoxic T lymphocytes (CTLs) eliminate virally infected cells through directed secretion of specialized lytic granules. Because a single CTL can kill multiple targets, degranulation must be tightly regulated. However, how CTLs regulate the termination of granule secretion remains unclear. Previous work demonstrated that centralized actin reduction at the immune synapse precedes degranulation. Using a combination of live confocal, total internal reflection fluorescence, and superresolution microscopy, we now show that, after granule fusion, actin recovers at the synapse and no further secretion is observed. Depolymerization of actin led to resumed granule secretion, suggesting that recovered actin acts as a barrier preventing sustained degranulation. Furthermore, RAB27a-deficient CTLs, which do not secrete cytotoxic granules, failed to recover actin at the synapse, suggesting that RAB27a-mediated granule secretion is required for actin recovery. Finally, we show that both actin clearance and recovery correlated with synaptic phosphatidylinositol 4,5-bisphosphate (PIP2) and that alterations in PIP2 at the immunological synapse regulate cortical actin in CTLs, providing a potential mechanism through which CTLs control cortical actin density. Our work provides insight into actin-related mechanisms regulating CTL secretion that may facilitate serial killing during immune responses.


Actins/immunology , CD8-Positive T-Lymphocytes/immunology , Immunological Synapses/immunology , Phosphatidylinositol 4,5-Diphosphate/immunology , Secretory Vesicles/immunology , rab27 GTP-Binding Proteins/immunology , Actins/genetics , Animals , CD8-Positive T-Lymphocytes/cytology , Immunological Synapses/genetics , Mice , Mice, Transgenic , Phosphatidylinositol 4,5-Diphosphate/genetics , Secretory Vesicles/genetics , rab27 GTP-Binding Proteins/genetics
12.
Cell Metab ; 25(6): 1254-1268.e7, 2017 Jun 06.
Article En | MEDLINE | ID: mdl-28591633

T cells undergo metabolic reprogramming with major changes in cellular energy metabolism during activation. In patients with mitochondrial disease, clinical data were marked by frequent infections and immunodeficiency, prompting us to explore the consequences of oxidative phosphorylation dysfunction in T cells. Since cytochrome c oxidase (COX) is a critical regulator of OXPHOS, we created a mouse model with isolated dysfunction in T cells by targeting a gene, COX10, that produces mitochondrial disease in humans. COX dysfunction resulted in increased apoptosis following activation in vitro and immunodeficiency in vivo. Select T cell effector subsets were particularly affected; this could be traced to their bioenergetic requirements. In summary, the findings presented herein emphasize the role of COX particularly in T cells as a metabolic checkpoint for cell fate decisions following T cell activation, with heterogeneous effects in T cell subsets. In addition, our studies highlight the utility of translational models that recapitulate human mitochondrial disease for understanding immunometabolism.


Alkyl and Aryl Transferases/immunology , Cell Differentiation/immunology , Electron Transport Complex IV/immunology , Lymphocyte Activation , Membrane Proteins/immunology , Mitochondrial Diseases/immunology , T-Lymphocytes/immunology , Alkyl and Aryl Transferases/genetics , Animals , Electron Transport Complex IV/genetics , Female , Humans , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Mitochondrial Diseases/genetics
13.
J Immunol ; 198(7): 2699-2711, 2017 04 01.
Article En | MEDLINE | ID: mdl-28213500

Patients with mutations in inducible T cell kinase (ITK) are susceptible to viral infections, particularly EBV, suggesting that these patients have defective function of CD8+ CTLs. In this study, we evaluated the effects of ITK deficiency on cytolysis in murine CTLs deficient in ITK, and both human and murine cells treated with an ITK inhibitor. We find that ITK deficiency leads to a global defect in the cytolysis of multiple targets. The absence of ITK both affected CTL expansion and delayed the expression of cytolytic effectors during activation. Furthermore, absence of ITK led to a previously unappreciated intrinsic defect in degranulation. Nonetheless, these defects could be overcome by early or prolonged exposure to IL-2, or by addition of IL-12 to cultures, revealing that cytokine signaling could restore the acquisition of effector function in ITK-deficient CD8+ T cells. Our results provide new insight into the effect of ITK and suboptimal TCR signaling on CD8+ T cell function, and how these may contribute to phenotypes associated with ITK deficiency.


CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic/immunology , Protein-Tyrosine Kinases/immunology , Animals , Cell Degranulation/immunology , Flow Cytometry , Fluorescent Antibody Technique , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Microscopy, Electron, Transmission
14.
Sci Transl Med ; 8(321): 321ra7, 2016 Jan 13.
Article En | MEDLINE | ID: mdl-26764158

X-linked lymphoproliferative disease (XLP-1) is an often-fatal primary immunodeficiency associated with the exuberant expansion of activated CD8(+) T cells after Epstein-Barr virus (EBV) infection. XLP-1 is caused by defects in signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), an adaptor protein that modulates T cell receptor (TCR)-induced signaling. SAP-deficient T cells exhibit impaired TCR restimulation-induced cell death (RICD) and diminished TCR-induced inhibition of diacylglycerol kinase α (DGKα), leading to increased diacylglycerol metabolism and decreased signaling through Ras and PKCθ (protein kinase Cθ). We show that down-regulation of DGKα activity in SAP-deficient T cells restores diacylglycerol signaling at the immune synapse and rescues RICD via induction of the proapoptotic proteins NUR77 and NOR1. Pharmacological inhibition of DGKα prevents the excessive CD8(+) T cell expansion and interferon-γ production that occur in SAP-deficient mice after lymphocytic choriomeningitis virus infection without impairing lytic activity. Collectively, these data highlight DGKα as a viable therapeutic target to reverse the life-threatening EBV-associated immunopathology that occurs in XLP-1 patients.


Diacylglycerol Kinase/antagonists & inhibitors , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/pathology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Death/drug effects , Cytokines/biosynthesis , Diacylglycerol Kinase/metabolism , Gene Silencing/drug effects , Humans , Immunological Synapses/drug effects , Immunological Synapses/metabolism , Lymphocyte Activation , Lymphocyte Count , Lymphoproliferative Disorders/drug therapy , Membrane Transport Proteins/metabolism , Mice , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidinones/pharmacology , Signal Transduction/drug effects , Signaling Lymphocytic Activation Molecule Associated Protein/deficiency , Signaling Lymphocytic Activation Molecule Associated Protein/metabolism , Thiazoles/pharmacology , ras Proteins/metabolism
15.
Blood ; 121(9): 1644-50, 2013 Feb 28.
Article En | MEDLINE | ID: mdl-23233663

Neutrophils express a variety of collagen receptors at their surface, yet their functional significance remains unclear. Although integrins are essential for neutrophil adhesion and migration on 2-dimensional (2D) surfaces, neutrophils can compensate for the absence of integrins in 3-dimensional (3D) lattices. In contrast, we demonstrate that the inhibition of the tyrosine-kinase collagen receptor discoidin domain receptor 2 (DDR2) has no impact on human primary neutrophil migration on 2D surfaces but is an important regulator of neutrophil chemotaxis in 3D collagen matrices. In this context, we show that DDR2 activation specifically regulates the directional migration of neutrophils in chemoattractant gradients. We further demonstrate that DDR2 regulates directionality through its ability to increase secretion of metalloproteinases and local generation of collagen-derived chemotactic peptide gradients. Our findings highlight the importance of collagen-derived extracellular signaling during neutrophil chemotaxis in 3D matrices.


Chemotaxis, Leukocyte , Neutrophils/physiology , Receptor Protein-Tyrosine Kinases/physiology , Receptors, Mitogen/physiology , Tissue Culture Techniques , Cell Migration Assays, Leukocyte/methods , Cell Polarity/drug effects , Cells, Cultured , Chemotaxis, Leukocyte/drug effects , Chemotaxis, Leukocyte/physiology , Collagen/chemistry , Collagen/pharmacology , Dipeptides/pharmacology , Discoidin Domain Receptors , Extracellular Matrix/chemistry , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Humans , Matrix Metalloproteinase 2/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Primary Cell Culture , Protease Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Mitogen/metabolism , Tissue Culture Techniques/methods , Tissue Scaffolds/chemistry
16.
J Virol ; 85(17): 9147-58, 2011 Sep.
Article En | MEDLINE | ID: mdl-21715493

Whole-body bioimaging was employed to study the effects of passive immunotherapies on lethality and viral dissemination in BALB/c mice challenged with recombinant vaccinia viruses expressing luciferase. WRvFire and IHD-J-Luc vaccinia viruses induced lethality with similar times to death following intranasal infection, but WRvFire replicated at higher levels than IHD-J-Luc in the upper and lower respiratory tracts. Three types of therapies were tested: licensed human anti-vaccinia virus immunoglobulin intravenous (VIGIV); recombinant anti-vaccinia virus immunoglobulin (rVIG; Symphogen, Denmark), an investigational product containing a mixture of 26 human monoclonal antibodies (HuMAbs) against mature virion (MV) and enveloped virion (EV); and HuMAb compositions targeting subsets of MV or EV proteins. Bioluminescence recorded daily showed that pretreatment with VIGIV (30 mg) or with rVIG (100 µg) on day -2 protected mice from death but did not prevent viral replication at the site of inoculation and dissemination to internal organs. Compositions containing HuMAbs against MV or EV proteins were protective in both infection models at 100 µg per animal, but at 30 µg, only anti-EV antibodies conferred protection. Importantly, the t statistic of the mean total fluxes revealed that viral loads in surviving mice were significantly reduced in at least 3 sites for 3 consecutive days (days 3 to 5) postchallenge, while significant reduction for 1 or 2 days in any individual site did not confer protection. Our data suggest that reduction of viral replication at multiple sites, including respiratory tract, spleen, and liver, as monitored by whole-body bioluminescence can be used to predict the effectiveness of passive immunotherapies in mouse models.


Animal Structures/virology , Immunization, Passive/methods , Respiratory System/virology , Vaccinia virus/pathogenicity , Vaccinia/mortality , Vaccinia/prevention & control , Viral Load , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Viral/administration & dosage , Disease Models, Animal , Female , Genes, Reporter , Immunoglobulin G/administration & dosage , Luciferases/metabolism , Luminescent Measurements , Mice , Mice, Inbred BALB C , Recombinant Proteins/administration & dosage , Rodent Diseases/mortality , Rodent Diseases/prevention & control , Staining and Labeling/methods , Survival Analysis , Time Factors , Vaccinia virus/immunology , Whole Body Imaging
17.
J Virol ; 83(20): 10437-47, 2009 Oct.
Article En | MEDLINE | ID: mdl-19656894

To find an alternative endpoint for the efficacy of antismallpox treatments, bioluminescence was measured in live BALB/c mice following lethal challenge with a recombinant WR vaccinia virus expressing luciferase. Intravenous vaccinia immunoglobulin treatments were used to confer protection on a proportion of animals. Using known lethality outcomes in 200 animals and total fluxes recorded daily in live animals, we performed univariate receiver operating characteristic (ROC) curve analysis to assess whether lethality can be predicted based on bioluminescence. Total fluxes in the spleens on day 3 and in the livers on day 5 generated accurate predictive models; the area under the ROC curve (AUC) was 0.91. Multiple logistic regression analysis utilizing a linear combination of six measurements: total flux in the liver on days 2, 3, and 5; in the spleen on days 1 and 3; and in the nasal cavity on day 4 generated the most accurate predictions (AUC = 0.96). This model predicted lethality in 90% of animals with only 10% of nonsurviving animals incorrectly predicted to survive. Compared with bioluminescence, ROC analysis with 25% and 30% weight loss as thresholds accurately predicted survival on day 5, but lethality predictions were low until day 9. Collectively, our data support the use of bioimaging for lethality prediction following vaccinia virus challenge and for gaining insight into protective mechanisms conferred by vaccines and therapeutics.


Luciferases, Firefly/metabolism , Luminescent Measurements/methods , Vaccinia virus/pathogenicity , Vaccinia/mortality , Animals , Female , Liver/metabolism , Liver/virology , Luciferases, Firefly/genetics , Lung/metabolism , Lung/virology , Mice , Mice, Inbred BALB C , Predictive Value of Tests , Recombination, Genetic , Survival Analysis , Vaccinia/virology , Vaccinia virus/genetics , Vaccinia virus/metabolism
18.
Expert Opin Drug Discov ; 3(5): 565-77, 2008 May.
Article En | MEDLINE | ID: mdl-23484927

BACKGROUND: Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide, yet no new drugs have been developed in the last 40 years. OBJECTIVE: The exceedingly lengthy TB chemotherapy and the increasing emergence of drug resistance complicated by HIV co-infection call for the development of new TB drugs. These problems are further compounded by a poor understanding of the biology of persister bacteria. METHODS: New molecular tools have offered insights into potential new drug targets, particularly the enzymes of the shikimate pathway, which is the focus of this review. RESULTS/CONCLUSION: Shikimate pathway enzymes, especially shikimate kinase, may offer attractive targets for new TB drug and vaccine development.

...