Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(10): 3111-3126, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36789722

RESUMEN

Lignin-derived aryl ethers and vanillin are essential platform chemicals that fulfil the demands for renewable aromatic compounds. Herein, an efficient heterogeneous catalyst is reported for reforming vanillin via a selective hydrodeoxygenation route to 2-methoxy-4-methyl phenol (MMP), a precursor to medicinal, food, and petrochemical industries. A series of MoCoOx@C catalysts were synthesized by decorating the Co-BTC MOF with different contents of MoO3 rods, followed by carbonization. Among these catalysts, MoCoOx@C-2 afforded ∼99% vanillin conversion and ∼99% MMP selectivity at 150 °C in 1.5 h in an aqueous medium. In contrast, CoOx@C afforded ∼75% vanillin conversion and ∼85% MMP selectivity. Detailed catalyst characterization revealed that CoOx and Co2Mo3O8 were the active species contributing to the higher activity of MoCoOx@C-2. The excellent H2-adsorption characteristics and acidity of MoCoOx@C-2 were beneficial to the hydrodeoxygenation of vanillin and other homologous compounds. The DFT adsorption energy calculations suggested the favourable interactions of vanillin and vanillyl alcohol with the Co2Mo3O8 sites in MoCoOx@C-2. The catalyst could be efficiently recycled 5 times, with a negligible loss in activity after the 5th cycle. These findings provide a systematic explication of the active sites of the mixed metal oxide-based MoCoOx@C-2 catalyst for the selective hydrodeoxygenation of vanillin to MMP, which is important for the academic and industrial catalysis community.

2.
Inorg Chem ; 61(47): 19010-19021, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36374619

RESUMEN

The development of an economical transition metal-based catalyst for photocatalytic carbon-carbon coupling reactions is aspiring. Herein, a Cu-Ce metal-organic framework (MOF) was synthesized and carbonized to produce bimetallic Cu2O-CeO2/C, which was utilized in the Sonogashira cross-coupling reaction. The defects and oxygen vacancies in the catalyst were characterized by X-ray photoelectron spectroscopy and Raman spectroscopy, while the nature of Cu was characterized by H2-TPR analysis. The defect-induced MOF-derived Cu-Ce heterojunction created more oxygen vacancies (OV) in CeO2, revealing the high photocatalytic activity. The Cu-Ce heterojunction (Cu2O-CeO2/C) formed a Cu(I)-phenylacetylide active complex and exhibited higher catalytic activity for the visible light-induced Sonogashira cross-coupling reaction. 25%Cu2O-CeO2/C offered 93.8% phenylacetylene conversion with a 94.2% Sonogashira product selectivity by using household light-emitting diodes. No discernible activity loss was observed from the recycling of the catalyst. Based on catalytic activity, control reactions, and physicochemical and optoelectronic characterization, the structure-activity relationship was established and a reaction mechanism was proposed. Replacement of the costly Pd metal-based catalyst with a cheap Cu2O-CeO2-based catalyst for the synthesis of commercially important compounds with a sustainable visible light-induced catalytic process will be highly attractive to chemists and industrialists.

3.
ChemSusChem ; 15(23): e202201560, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36134620

RESUMEN

A chitosan-derived metal-free N-doped carbon catalyst was synthesized and investigated for selective reductive formylation of quinoline to N-formyl-tetrahydroquinoline and nitroarenes to N-formyl anilides via aqueous formic acid (FA)-mediated catalytic transformation. FA dissociated on the catalyst surface and acted as a hydrogenating and formylating source for selective N-formylation of N-heteroarenes. The carbonized catalyst prepared at 700 °C offered the best activity. A 92 % yield of N-formyl-tetrahydroquinoline after 14 h and >99 % yield for N-formyl anilide after 12 h at 160 °C were obtained. The excellent catalytic activity was correlated with the type of "N" species and the basicity of the catalyst. Density functional theory calculations revealed that a water-assisted FA decomposition pathway (deprotonation and dehydroxylation) generated the surface adsorbed -H and -HCOO species, required for the formation of N-formylated products. In addition, the selective formation of N-formyl-tetrahydroquinoline and N-formyl anilides was explained by a comprehensive reaction energetics analysis.


Asunto(s)
Carbono , Quitosano , Agua
4.
Inorg Chem ; 61(32): 12781-12796, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35913785

RESUMEN

Hydrogen peroxide (H2O2) is a powerful oxidant that directly or indirectly oxidizes many organic and inorganic contaminants. The photocatalytic generation of H2O2 is achieved by using a semiconductor photocatalyst in the presence of alcohol as a proton source. Herein, we have synthesized oxygen vacancy (Ov)-mediated TiO2/B-doped g-C3N4/rGO (TBCN@rGO) ternary heterostructures by a simple hydrothermal technique. Several characterization techniques were employed to explore the existence of oxygen vacancies in the crystal structure and investigate their impact on the optoelectronic properties of the catalyst. Oxygen vacancies offered additional sites for adsorbing molecular oxygen, activating alcohols, and facilitating electron migration from TBCN@rGO to the surface-adsorbed O2. The defect creation (oxygen vacancy) and Z-scheme mechanistic pathways create a suitable platform for generating H2O2 by two-electron reduction processes. The optimized catalyst showed the highest photocatalytic H2O2 evolution rate of 172 µmol/h, which is 1.9 and 2.5 times greater than that of TBCN and BCN, respectively. The photocatalytic oxidation of various lignocellulose-derived alcohols (such as furfural alcohol and vanillyl alcohol) and benzyl alcohol was also achieved. Photocatalytic activity data, physicochemical and optoelectronic features, and trapping experiments were conducted to elucidate the structure-activity relationships. The TBCN@rGO acts as a multifunctional Z-scheme photocatalyst having an oxygen vacancy, modulates surface acidity-basicity required for the adsorption and activation of the reactant molecules, and displays excellent photocatalytic performance due to the formation of a large number of active surface sites, increased electrical conductivity, improved charge transfer properties, outstanding photostability, and reusability. The present study establishes a unique strategy for improving H2O2 generation and alcohol oxidation activity and also provides insights into the significance of a surface vacancy in the semiconductor photocatalyst.

5.
Mater Horiz ; 9(2): 607-639, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34897343

RESUMEN

Solar fuel generation through CO2 hydrogenation is the ultimate strategy to produce sustainable energy sources and alleviate global warming. The photocatalytic CO2 conversion process resembles natural photosynthesis, which regulates the ecological systems of the earth. Currently, most of the work in this field has been focused on boosting efficiency rather than controlling the distribution of products. The structural architecture of the semiconductor photocatalyst, CO2 photoreduction process, product analysis, and elucidating the CO2 photoreduction mechanism are the key features of the photoreduction of CO2 to generate C1 and C2 based hydrocarbon fuels. The selectivity of C1 and C2 products during the photocatalytic CO2 reduction have been ameliorated by suitable photocatalyst design, co-catalyst, defect states, and the impacts of the surface polarisation state, etc. Monitoring product selectivity allows the establishment of an appropriate strategy to generate a more reduced state of a hydrocarbon, such as CH4 or higher carbon (C2) products. This article concentrates on studies that demonstrate the production of C1 and C2 products during CO2 photoreduction using H2O or H2 as an electron and proton source. Finally, it highlights unresolved difficulties in achieving high selectivity and photoconversion efficiency of CO2 in C1 and C2 products over various nanostructured materials.


Asunto(s)
Dióxido de Carbono , Nanoestructuras , Dióxido de Carbono/química , Catálisis , Fotosíntesis , Energía Renovable
6.
Chem Asian J ; 16(22): 3790-3803, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34608762

RESUMEN

The synthesis of secondary amine by the photoalkylation of nitrobenzene with benzyl alcohol using a simple light source and sunlight is a challenging task. Herein, a one-pot cascade protocol is employed to synthesize secondary amine by the reaction between nitrobenzene and benzyl alcohol. The one-pot cascade protocol involves four reactions: (a) photocatalytic reduction of nitrobenzene to aniline, (b) photocatalytic oxidation of benzyl alcohol to benzaldehyde, (c) reaction between aniline and benzaldehyde to form imine, and (d) photocatalytic reduction of imine to a secondary amine. The cascade protocol to synthesize secondary amine is accomplished using Bi2 MoO6 and Pd nanoparticles decorated Bi2 MoO6 catalysts. The surface characteristics, oxidation states, and elemental compositions of the materials are characterized by several physicochemical characterization techniques. Optoelectronic and photoelectrochemical measurements are carried out to determine the bandgap, band edge potentials, photocurrents, charge carrier's separation, etc. An excellent yield of secondary amine is achieved with simple household white LED bulbs. The catalyst also exhibits similar or even better activity in sunlight. The structure-activity relationship is established using catalytic activity data, control reactions, physicochemical, optoelectronic characteristics, and scavenging studies. Bi2 MoO6 and Pd nanoparticles decorated Bi2 MoO6 exhibit excellent photostability and recyclability. The simple catalyst design with a sustainable and economical light source for the synthesis of useful secondary amine from the nitrobenzene and benzyl alcohol would attract the researchers to develop similar catalytic protocols for other industrially important chemicals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...