Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5802, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987248

RESUMEN

Next-generation light-emitting applications such as displays and optical communications require judicious control over emitted light, including intensity and angular dispersion. To date, this remains a challenge as conventional methods require cumbersome optics. Here, we report highly directional and enhanced electroluminescence from a solution-processed quasi-2-dimensional halide perovskite light-emitting diode by building a device architecture to exploit hybrid plasmonic-photonic Tamm plasmon modes. By exploiting the processing and bandgap tunability of the halide perovskite device layers, we construct the device stack to optimise both optical and charge-injection properties, leading to narrow forward electroluminescence with an angular full-width half-maximum of 36.6° compared with the conventional isotropic control device of 143.9°, and narrow electroluminescence spectral full-width half-maximum of 12.1 nm. The device design is versatile and tunable to work with emission lines covering the visible spectrum with desired directionality, thus providing a promising route to modular, inexpensive, and directional operating light-emitting devices.

2.
J Phys Chem Lett ; 14(50): 11333-11341, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38064364

RESUMEN

Lead Mixed Halide Perovskites (LMHPs), CsPbBrI2, have attracted significant interest as promising candidates for wide bandgap absorber layers in tandem solar cells due to their relative stability and red-light emission with a bandgap ∼1.7 eV. However, these materials segregate into Br-rich and I-rich domains upon continuous illumination, affecting their optical properties and compromising the operational stability of devices. Herein, we track the microscopic processes occurring during halide segregation by using combined spectroscopic measurements at room and cryogenic temperatures. We also evaluate a passivation strategy to mitigate the halide migration of Br/I ions in the films by overcoating with cyclic olefin copolymer (COC). Our results explain the correlation between grain size, intensity dependencies, phase segregation, activation energy barrier, and their influence on photoinduced carrier lifetimes. Importantly, COC treatment increases the lifetime charge carriers in mixed halide thin films, improving efficient charge transport in perovskite solar cell applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...