Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(27): 39735-39747, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833050

RESUMEN

As innovative and versatile agents with potential applications in a wide range of fields including medicine, electronics, wastewater treatment, cosmetics, and energy storage devices, magnetic nanoparticles (NPs) are significant attention. However, our knowledge of the harmful effects of different-sized NPs, particularly of their effects on aquatic animals, is limited. In this study, we evaluated the impact of different-sized (sub-2, 5, and 15 nm) cobalt ferrite (CoFe2O4) NPs on the biological parameters of rainbow trout (Oncorhynchus mykiss) embryos and larvae. The NPs were characterized using techniques such as high-resolution transmission electron microscopy (HRTEM) for imaging, X-ray diffraction (XRD) for crystallographic analysis, and energy-dispersive X-ray spectroscopy (EDX) for elemental analysis, and were tested for impact through a series of toxicity, genotoxicity, and biochemical assays at a concentration of 100 mg/L. The obtained results showed that toxicity of CoFe2O4 NPs depended on the size of NPs and the developmental stage of the fish. Our results, which revealed significant changes in biological parameters of O. mykiss under exposure to CoFe2O4 NPs, imply that these NPs may be not environmentally safe. The hierarchical cluster analysis showed that embryos of the control group were clearly separated from those exposed to NPs of various sizes. However, in the exposed larvae, the effects of control and the smallest-sized NPs (sub-2 nm) differed from those induced by larger NPs (5 nm and 15 nm). Additional research is necessary to comprehend the mechanisms underlying the observed variations, which would be advantageous for both managing the risk of NPs to humans and advancing the field of aquatic nanotoxicology.


Asunto(s)
Cobalto , Compuestos Férricos , Oncorhynchus mykiss , Animales , Cobalto/toxicidad , Cobalto/química , Compuestos Férricos/toxicidad , Compuestos Férricos/química , Embrión no Mamífero/efectos de los fármacos , Nanopartículas/toxicidad , Nanopartículas/química , Contaminantes Químicos del Agua/toxicidad
2.
ACS Appl Nano Mater ; 7(6): 6185-6195, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38544503

RESUMEN

The demand for multimodal nanomaterials has intensified in recent years driven by the need for ultrasensitive bioimaging probes and accurate temperature monitoring in biological objects. Among the different multimodal nanomaterials that have been extensively studied in the past decade, upconverting nanoparticles are among the most promising. In this paper, we report the synthesis of upconverting nanoparticles with complex core-shell compositions, capable of being excited by 808 or 980 nm laser irradiation and exhibiting a good MRI response. The synthesized nanoparticles also demonstrated high colloidal stability in both aqueous and biological media as well as temperature-sensing capabilities, including the physiological range. Furthermore, the upconversion nanoparticles exhibited significantly lower cytotoxicity for HEK293T cells than the commercially available MRI contrast agent Gd-DTPA.

3.
Biophys J ; 122(19): 3937-3949, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37621088

RESUMEN

Polarimetric second harmonic generation (SHG) microscopy imaging is employed to investigate the ultrastructural organization of biological and biomimetic partially oriented fibrillar structures. The linear polarization-in polarization-out SHG microscopy measurements are conducted with rat tail tendon, rabbit cornea, pig cartilage, and biomimetic meso-tetra(4-sulfonatophenyl)porphine (TPPS4) cylindrical aggregates, which represent different two- and three-dimensional (2D and 3D) configurations of C6 symmetry fibril structures in the focal volume (voxel) of the microscope. The polarization-in polarization-out imaging of rat tail tendon reveals that SHG intensity is affected by parallel/antiparallel arrangements of the fibers, and achiral (R) and chiral (C) susceptibility component ratio values change by tilting the tendon fibers out of image plane. The R ratio changes for the 2D crossing fibers observed in cornea tissue. The 3D crossing of fibers also affects R ratio in cartilage tissue. The distinctly different dependence of R on crossing and tilting of fibers is demonstrated in collagen and TPPS4 aggregates, due to the achiral molecular susceptibility ratio having values below and above 3, respectively. The polarimetric microscopy results correspond well with the analytical expressions of amplitude and R and C ratios dependence on the crossing angle of the fibers. The experimentally measured SHG intensity and R and C ratio maps are consistent with the computational modeling of various fiber configurations presented in the preceding article. The demonstrated SHG intensity and R and C ratio dependencies on fibril configurations provide the basis for interpreting polarimetric SHG microscopy images in terms of 3D ultrastructural organization of fibers in each voxel of the samples.

4.
J Mater Chem B ; 11(17): 3919-3928, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37060145

RESUMEN

Intracellular polarity in lipid droplets as well as other organelles may provide useful knowledge about various processes taking place in live cells. Therefore, small fluorophores capable of visualising polarity are undergoing rapid development. In this paper, we report new red-emitting polarity sensitive BODIPY probes that can distinguish between liquid-ordered and liquid-disordered phases and can internalise into lipid droplets of live cells. Our reported probes sense lipid environment not through solvatochromic shift of the fluorescence spectra but through the change in the fluorescence lifetime of their monoexponential decays. This makes them convenient for fluorescence lifetime imaging microscopy. The probes were synthesised by modifying viscosity-sensitive meso-phenyl BODIPY with electron-donating 2-thienyl moieties at the α- and ß-positions, significantly red-shifting absorption and fluorescence spectra of the dyes and improving sensitivity to polarity, while suppressing viscosity dependence. Finally, a novel probe - BP OC16 TP2 was suitable for sensing polarity in lipid droplets of live MCF-7 human breast cancer cells. We demonstrated that different chemotherapeutics affected lipid droplet polarity differently: cisplatin had no effect on lipid droplet polarity, whereas paclitaxel, depending on its concentration, either decreased or increased lipid droplet polarity.


Asunto(s)
Gotas Lipídicas , Tiofenos , Humanos , Microscopía Fluorescente/métodos , Compuestos de Boro
5.
RSC Adv ; 12(54): 35300-35308, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36540206

RESUMEN

Photoluminescent (PL) metal and metal oxide nanoclusters (NCs), with a size of just several nanometers, are a separate class of nanomaterials abundant with new attractive optical, physical, and chemical properties and biocompatibility. However, the synthesis of PL magnetic NCs via attachment of PL NCs to iron oxide-based nanoparticles (NPs) is still problematic. Motivated by this, herein, we report the development of a microwave-driven conjugation approach of red-fluorescent gold nanoclusters (BSA@AuNCs) to superparamagnetic NPs. Synthesized CoFe2O4@AuNCs possess strong photoluminescence in water and ethanol media as well as good colloidal and optical stability, and magnetization response. High-resolution transmission electron microscopy (HRTEM), steady-state and time-resolved photoluminescence spectroscopy, X-ray powder diffraction (XRD), and magnetic measurements from ambient to cryogenic temperatures were applied for structural characterization and evaluation of optical and magnetic properties of the synthesized species.

6.
Nanomaterials (Basel) ; 12(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234387

RESUMEN

Highly biocompatible nanostructures for multimodality imaging are critical for clinical diagnostics improvements in the future. Combining optical imaging with other techniques may lead to important advances in diagnostics. The purpose of such a system would be to combine the individual advantages of each imaging method to provide reliable and accurate information at the site of the disease bypassing the limitations of each. The aim of the presented study was to evaluate biodistribution of the biocompatible technetium-99m labelled bovine serum albumin-gold nanoclusters (99mTc-BSA-Au NCs) as photoluminescence-SPECT/CT agent in experimental animals. It was verified spectroscopically that radiolabelling with 99mTc does not influence the optical properties of BSA-Au NCs within the synthesized 99mTc-BSA-Au NCs bioconjugates. Biodistribution imaging of the 99mTc-BSA-Au NCs in Wistar rats was performed using a clinical SPECT/CT system. In vivo imaging of Wistar rats demonstrated intense cardiac blood pool activity, as well as rapid blood clearance and accumulation in the kidneys, liver, and urinary bladder. Confocal images of kidney, liver and spleen tissues revealed no visible uptake indicating that the circulation lifetime of 99mTc-BSA-Au NCs in the bloodstream might be too short for accumulation in these tissues. The cellular uptake of 99mTc-BSA-Au NCs in kidney cells was also delayed and substantial accumulation was observed only after 24-h incubation. Based on our experiments, it was concluded that 99mTc-BSA-Au NCs could be used as a contrast agent and shows promise as potential diagnostic agents for bloodstream imaging of the excretory organs in vivo.

7.
Sci Total Environ ; 838(Pt 4): 156525, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679940

RESUMEN

Graphene oxide (GO) are novel nanomaterials with a wide range of applications due to their high absorption capacity. This study was undertaken with a view to assess the bioaccumulation and acute toxicity of GO used in combination with the heavy metal mixture (Cr, Cu, Ni and Zn) to fish embryos and larvae. For this purpose, Salmo trutta embryos and larvae were subjected to the 4-day long treatment with three different concentrations of GO, the metal mixture, which was prepared of four metals at the concentrations corresponding to the maximum-permissible-concentrations for EU inland waters (Cr-0.01, Cu-0.01, Ni-0.034, and Zn-0.1 mg/L), and with GO in combination with MIX (GO+MIX). When used in combination with the metal mixture, GO exhibited a high metal sorption capacity. The obtained confocal fluorescence microscopy results showed that GO located in the embryo chorion causing its damage; in larvae, however, GO were found only in the gill region. Results of these experiments confirmed the hypothesis that GO affects the accumulation of metals and mitigates their toxic effects on organism. In embryos, the acute toxicity of exposure to GO and co-exposure to MIX+GO was found to manifest itself through the decreased heart rate (HR) and malondialdehyde (MDA) level and through the increased metallothionein (MT) concentration. Meanwhile, in larvae, GO and MIX+GO were found to induce genotoxicity effects. However, changes in HR, MDA, MT, gill ventilation frequency, yolk sack absorption and cytotoxicity compared with those of the control group were not recorded in larvae. The obtained results confirmed our hypothesis: the combined effect of MIX and GO was less toxic to larvae (especially survival) than individual effects of MIX components. However, our results emphasize that fish exposure to GO alone and in combination with heavy metal contaminants (MIX+GO) even at environmentally relevant concentrations causes health risks that cannot be ignored.


Asunto(s)
Grafito , Metales Pesados , Contaminantes Químicos del Agua , Animales , Grafito/toxicidad , Larva , Metalotioneína , Metales Pesados/toxicidad , Trucha , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
8.
Int J Mol Sci ; 23(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35628497

RESUMEN

BODIPY-based molecular rotors are highly attractive imaging tools for imaging intracellular microviscosity in living cells. In our study, we investigated the ability to detect the microviscosity of biological objects by using BDP-NO2 and BDP-H molecular rotors. We describe in detail the optical properties of BDP-NO2 and BDP-H molecular rotors in aqueous media with and without proteins, together with their accumulation dynamics and localization in live and fixed human breast cancer cells. Furthermore, we investigate the applicability of these molecules to monitor microviscosity in the organelles of human breast cancer cells by fluorescence lifetime imaging microscopy (FLIM). We demonstrate that the BDP-NO2 molecular rotor aggregates in aqueous media and is incompatible with live cell imaging. The opposite effect is observed with BDP-H which preserves its stability in aqueous media, diffuses through the plasma membrane and accumulates in lipid droplets (LDs) and the cytosol of both live and fixed MCF-7 and MDA-MB-231 cancer cells. Finally, by utilizing BDP-H we demonstrate that LD microviscosity is significantly elevated in more malignant MDA-MB-231 human breast cancer cells, as compared to MCF-7 breast cancer cells. Our findings demonstrate that BDP-H is a water-compatible probe that can be successfully applied to measure microviscosity in the LDs of living cells.


Asunto(s)
Neoplasias de la Mama , Compuestos de Boro , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Colorantes Fluorescentes , Humanos , Dióxido de Nitrógeno
9.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454798

RESUMEN

Personalized cancer theranostics has a potential to increase efficiency of early cancer diagnostics and treatment, and to reduce negative side-effects. Protein-stabilized gold nanoclusters may serve as theranostic agents. To make gold nanoclusters personalized and highly biocompatible, the clusters were stabilized with human plasma proteins. Optical properties of synthesized nanoclusters were investigated spectroscopically, and possible biomedical application was evaluated using standard cell biology methods. The spectroscopic investigations of human plasma proteins stabilized gold nanoclusters revealed that a wide photoluminescence band in the optical tissue window is suitable for cancer diagnostics. High-capacity generation of singlet oxygen and other reactive oxygen species was also observed. Furthermore, the cluster accumulation in cancer cells and the photodynamic effect were evaluated. The results demonstrate that plasma proteins stabilized gold nanoclusters that accumulate in breast cancer cells and are non-toxic in the dark, while appear phototoxic under irradiation with visible light. The results positively confirm the utility of plasma protein stabilized gold nanoclusters for the use in cancer diagnostics and treatment.

10.
J Mater Chem B ; 10(4): 625-636, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34989749

RESUMEN

Upconverting nanoparticles (UCNPs) possess great potential for biomedical application. UCNPs absorb and convert near-infrared (NIR) radiation in the biological imaging window to visible (Vis) and even ultraviolet (UV) radiation. NIR excitation offers reduced scattering and diminished autofluorescence in biological samples, whereas the emitted UV-Vis and NIR photons can be used for cancer treatment and imaging, respectively. However, UCNPs are usually synthesized in organic solvents and are not readily suitable for biomedical application due to the hydrophobic nature of their surface. Herein, we have removed the hydrophobic ligands from the synthesized UCNPs and coated the bare UCNPs with two custom-made hydrophilic polyelectrolytes (synthesized via the reversible addition-fragmentation chain transfer (RAFT) polymerization method). Polymers containing different amounts of PEGylated and carboxylic groups were studied. Coating with both polymers increased the upconversion (UC) emission intensity and photoluminescence lifetime values of the UCNPs, which directly translates to more efficient cancer cell labeling nanoprobes. The polymer composition plays a crucial role in the modification of UCNPs, not only with respect to their colloidal stability, but also with respect to the cellular uptake. Colloidally unstable bare UCNPs aggregate in cell culture media and precipitate, rendering themselves unsuitable for any biomedical use. However, stabilization with polymers prevents UCNPs from aggregation, increases their uptake in cells, and improves the quality of cellular labeling. This investigation sheds light on the appropriate coating for UCNPs and provides relevant insights for the rational development of imaging and therapeutic tools.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Nanopartículas/química , Polímeros/química , Línea Celular Tumoral , Coloides/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Tamaño de la Partícula
11.
Chemistry ; 27(67): 16768-16775, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34553449

RESUMEN

Viscosity imaging at a microscopic scale can provide important information about biosystems, including the development of serious illnesses. Microviscosity imaging is achievable with viscosity-sensitive fluorophores, the most popular of which are based on the BODIPY group. However, most of the BODIPY probes fluoresce green light, whereas the red luminescence is desired for the imaging of biological samples. Designing a new viscosity probe with suitable spectroscopic properties is a challenging task because it is difficult to preserve viscosity sensitivity after modifying the molecular structure. Here we describe how we developed a new red-emitting, viscosity-sensitive, BODIPY fluorophore BP-PH-2M-NO2 that is suitable for reliable intracellular viscosity imaging of lipid droplets in MCF-7 breast cancer cells. The design of BP-PH-2M-NO2 was aided by DFT calculations that allowed a successful prediction of the viscosity sensitivity of fluorophores before synthesis. In summary, we report a new red viscosity probe possessing monoexponential fluorescence decay that makes it attractive for lifetime-based viscosity imaging.


Asunto(s)
Compuestos de Boro , Colorantes Fluorescentes , Imagen Óptica , Viscosidad
12.
ACS Appl Mater Interfaces ; 13(37): 43937-43951, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34499462

RESUMEN

Nanotechnology has emerged as a promising solution to permanent elimination of cancer. However, nanoparticles themselves lack specificity to tumors. Due to enhanced migration to tumors, mesenchymal stem cells (MSCs) were suggested as cell-mediated delivery vehicles of nanoparticles. In this study, we have constructed a complex composed of photoluminescent quantum dots (QDs) and a photosensitizer chlorin e6 (Ce6) to obtain multifunctional nanoparticles, combining cancer diagnostic and therapeutic properties. QDs serve as energy donors-excited QDs transfer energy to the attached Ce6 via Förster resonance energy transfer, which in turn generates reactive oxygen species. Here, the physicochemical properties of the QD-Ce6 complex and singlet oxygen generation were measured, and the stability in protein-rich media was evaluated, showing that the complex remains the most stable in protein-free medium. In vitro studies on MSC and cancer cell response to the QD-Ce6 complex revealed the complex-loaded MSCs' potential to transport theranostic nanoparticles and induce cancer cell death. In vivo studies proved the therapeutic efficacy, as the survival of tumor-bearing mice was statistically significantly increased, while tumor progression and metastases were slowed down.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Pulmonar de Lewis/diagnóstico por imagen , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Células Madre Mesenquimatosas/metabolismo , Nanopartículas Multifuncionales/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/efectos de la radiación , Compuestos de Cadmio/química , Compuestos de Cadmio/metabolismo , Compuestos de Cadmio/efectos de la radiación , Compuestos de Cadmio/uso terapéutico , Carcinoma Pulmonar de Lewis/metabolismo , Línea Celular Tumoral , Clorofilidas/química , Clorofilidas/metabolismo , Clorofilidas/efectos de la radiación , Clorofilidas/uso terapéutico , Femenino , Humanos , Luz , Ratones Endogámicos C57BL , Nanopartículas Multifuncionales/química , Nanopartículas Multifuncionales/metabolismo , Nanopartículas Multifuncionales/efectos de la radiación , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/efectos de la radiación , Fármacos Fotosensibilizantes/uso terapéutico , Medicina de Precisión/métodos , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Puntos Cuánticos/efectos de la radiación , Puntos Cuánticos/uso terapéutico , Compuestos de Selenio/química , Compuestos de Selenio/metabolismo , Compuestos de Selenio/efectos de la radiación , Compuestos de Selenio/uso terapéutico , Oxígeno Singlete/metabolismo , Sulfuros/química , Sulfuros/metabolismo , Sulfuros/efectos de la radiación , Sulfuros/uso terapéutico , Compuestos de Zinc/química , Compuestos de Zinc/metabolismo , Compuestos de Zinc/efectos de la radiación , Compuestos de Zinc/uso terapéutico
13.
ACS Appl Mater Interfaces ; 13(33): 39076-39087, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34378375

RESUMEN

Fluorophores with multifunctional properties known as rare-earth-doped nanoparticles (RENPs) are promising candidates for bioimaging, therapy, and drug delivery. When applied in vivo, these nanoparticles (NPs) have to retain long blood-circulation time, bypass elimination by phagocytic cells, and successfully arrive at the target area. Usually, NPs in a biological medium are exposed to proteins, which form the so-called "protein corona" (PC) around the NPs and influence their targeted delivery and accumulation in cells and tissues. Different surface coatings change the PC size and composition, subsequently deciding the fate of the NPs. Thus, detailed studies on the PC are of utmost importance to determine the most suitable NP surface modification for biomedical use. When it comes to RENPs, these studies are particularly scarce. Here, we investigate the PC composition and its impact on the cellular uptake of citrate-, SiO2-, and phospholipid micelle-coated RENPs (LiYF4:Yb3+,Tm3+). We observed that the PC of citrate- and phospholipid-coated RENPs is relatively stable and similar in the adsorbed protein composition, while the PC of SiO2-coated RENPs is larger and highly dynamic. Moreover, biocompatibility, accumulation, and cytotoxicity of various RENPs in cancer cells have been evaluated. On the basis of the cellular imaging, supported by the inhibition studies, it was revealed that RENPs are internalized by endocytosis and that specific endocytic routes are PC composition dependent. Overall, these results are essential to fill the gaps in the fundamental understanding of the nano-biointeractions of RENPs, pertinent for their envisioned application in biomedicine.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Colorantes Fluorescentes/química , Compuestos de Litio/química , Nanopartículas del Metal/química , Corona de Proteínas/metabolismo , Dióxido de Silicio/química , Itrio/química , Adsorción , Neoplasias de la Mama , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Ácido Cítrico/química , Materiales Biocompatibles Revestidos/metabolismo , Endocitosis , Colorantes Fluorescentes/metabolismo , Humanos , Tamaño de la Partícula , Fosfolípidos/química , Propiedades de Superficie
14.
Sensors (Basel) ; 20(23)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276535

RESUMEN

The ever-growing demand for fast, cheap, and reliable diagnostic tools for personalised medicine is encouraging scientists to improve existing technology platforms and to create new methods for the detection and quantification of biomarkers of clinical significance. Simultaneous detection of multiple analytes allows more accurate assessment of changes in biomarker expression and offers the possibility of disease diagnosis at the earliest stages. The concept of multiplexing, where multiple analytes can be detected in a single sample, can be tackled using several types of nanomaterial-based biosensors. Quantum dots are widely used photoluminescent nanoparticles and represent one of the most frequent choices for different multiplex systems. However, nanoparticles that incorporate gold, silver, and rare earth metals with their unique optical properties are an emerging perspective in the multiplexing field. In this review, we summarise progress in various nanoparticle applications for multiplexed biomarkers.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Puntos Cuánticos , Oro , Plata
15.
Chem Commun (Camb) ; 56(22): 3341-3344, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32090219

RESUMEN

In the synthesis of CuInS2 quantum dots (QDs), the halide ions present in the copper salts influence the QD growth and optical properties. X-ray absorption spectroscopy allowed rationalizing the halide incorporation in the lattice and the dependence of electronic properties of the material on the ion's polarizability and interaction with hydrophobic moieties.

16.
J Photochem Photobiol B ; 204: 111802, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31981990

RESUMEN

Suitable properties as well as eco-friendly synthesis of photoluminescent Au nanoclusters (NCs) make them promising compounds for biomedical diagnostics and visualization applications. However, the potential photochemical activity of such agents on cancerous cells is largely unknown. The nanoclusters (BSA-Au NCs) were synthetized in the presence of BSA (an average hydrodynamic diameter was about 9.4 nm, while the size of the metal cluster was <1.3 nm according to atomic force microscopy measurements) and possessed a broad photoluminescence band at 680 nm in buffered (pH 7.2) aqueous medium. The photochemical activity was studied by adding two fluorescent probes (dihydrorhodamine or Singlet Oxygen Sensor Green) for detection of reactive oxygen species in samples irradiated at 405 nm to minimize direct excitation of the probes. The photoluminescence measurements evidenced the capability of BSA-Au NCs to generate reactive oxygen species upon light exposure, while the observed sensitivity of the photoluminescence properties might be used to indicate photooxidative processes in the medium. The viability test performed on breast cancer cells after incubation with BSA-Au NCs and subsequent irradiation revealed notable difference in induced phototoxicity between two cell lines, which was not the case after the corresponding treatment using the photosensitizer chlorin e6.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Bovina/química , Oxígeno Singlete/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Bovinos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Femenino , Colorantes Fluorescentes/química , Humanos , Láseres de Semiconductores , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/toxicidad , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno/química , Oxígeno Singlete/química , Espectrometría de Fluorescencia
17.
J Nanobiotechnology ; 17(1): 39, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30866960

RESUMEN

BACKGROUND: Human mesenchymal stem cells (MSCs) have drawn much attention in the field of regenerative medicine for their immunomodulatory and anti-inflammatory effects. MSCs possess specific tumor-oriented migration and incorporation highlighting the potential for MSCs to be used as an ideal carrier for anticancer agents. Bone marrow is the main source of MSCs for clinical applications. MSCs tracking in vivo is a critical component of the safety and efficacy evaluation of therapeutic cell products; therefore, cells must be labeled with contrast agents to enable visualization of the MSCs migration in vivo. Due to their unique properties, quantum dots (QDs) are emerging as optimal tools in long-term MSC optical imaging applications. The aim of this study was to investigate the uptake dynamics, cytotoxity, subcellular and extracellular distribution of non-targeted carboxylated quantum dots in human bone marrow MSCs at different cell growing densities. RESULTS: QDs had no negative impact on MSC viability throughout the experiment and accumulated in all observed cells efficiently; however, in some MSCs QDs induced formation of lipid droplets. At low cell growing densities QDs distribute within MSCs cytoplasm already after 1 h of incubation reaching saturation after 6 h. After 24 h QDs localize mainly in the perinuclear region of the cells in endosomes. Interestingly, in more confluent culture QDs localize mostly outside MSCs. QDs abundantly mark MSC long filopodia-like structures attaching neighboring cells. At high cell density cultivation, we for the first time demonstrated that carboxylated QDs localize in human bone marrow MSC extracellular matrix. Moreover, we observed that average photoluminescence lifetime of QDs distributed in extracellular matrix are longer than lifetimes of QDs entrapped in endocytic vesicles; thus, for the first time showing the possibility to identify and distinguish localization of QDs in various extracellular and intracellular structures using fluorescence-lifetime imaging microscopy without additional staining assays. CONCLUSION: Carboxylated QDs can be used as nonspecific and effective dye for staining of human bone marrow MSCs and their specific extracellular structures. These results are promising in fundamental stem cell biology as well as in cellular therapy, anticancer drug delivery and tissue engineering.


Asunto(s)
Ácidos Carboxílicos/química , Colorantes Fluorescentes/metabolismo , Células Madre Mesenquimatosas/metabolismo , Puntos Cuánticos/metabolismo , Transporte Biológico , Movimiento Celular , Supervivencia Celular , Matriz Extracelular/metabolismo , Humanos , Imagen Óptica , Coloración y Etiquetado , Factores de Tiempo
18.
Nanomaterials (Basel) ; 9(1)2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30583495

RESUMEN

Nanomaterials have permeated various fields of scientific research, including that of biomedicine, as alternatives for disease diagnosis and therapy. Among different structures, quantum dots (QDs) have distinctive physico-chemical properties sought after in cancer research and eradication. Within the context of cancer therapy, QDs serve the role of transporters and energy donors to photodynamic therapy (PDT) drugs, extending the applicability and efficiency of classic PDT. In contrast to conventional PDT agents, QDs' surface can be designed to promote cellular targeting and internalization, while their spectral properties enable better light harvesting and deep-tissue use. Here, we investigate the possibility of complex formation between different amphiphilic coating bearing QDs and photosensitizer chlorin e6 (Ce6). We show that complex formation dynamics are dependent on the type of coating-phospholipids or amphiphilic polymers-as well as on the surface charge of QDs. Förster's resonant energy transfer occurred in every complex studied, confirming the possibility of indirect Ce6 excitation. Nonetheless, in vitro PDT activity was restricted only to negative charge bearing QD-Ce6 complexes, correlating with better accumulation in cancer cells. Overall, these findings help to better design such and similar complexes, as gained insights can be straightforwardly translated to other types of nanostructures-expanding the palette of possible therapeutic agents for cancer therapy.

19.
Sci Total Environ ; 635: 1280-1291, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29710581

RESUMEN

Due to colloidal instability even with protective coatings, nanoparticles tend to aggregate in complex environments and possibly interact with biota. In this study, visualization of quantum dots (QDs) interaction with rainbow trout (Oncorhynchus mykiss) embryos was performed. Studies on zebrafish (Danio rerio) and pearl gourami (Trichogaster leerii) embryos have shown that QDs interact with embryos in a general manner and their affects are independent on the type of the embryo. It was demonstrated that carboxylated CdSe/ZnS QDs (4 nM) were aggregating in accumulation media and formed agglomerates on the surface of fish embryos under 1-12 days incubation in deep-well water. Detailed analysis of QDs distribution on fish embryos surface and investigation of the penetration of QDs through embryo's membrane showed that the chorion protects embryos from the penetration through the chorion and the accumulation of nanoparticles inside the embryos. Confocal microscopy and spectroscopy studies on rainbow trout embryos demonstrated that QDs cause chorion damage, due to QDs aggregation on the surface of chorion, even the formation of the agglomerates at the outer part of the embryos and/or with the mucus were detected. Aggregation of QDs and formation of agglomerates on the outer part of the embryo's membrane caused the intervention of the aggregates to the chorion and even partially destroyed the embryo's chorion. The incorporation of QDs in chorion was confirmed by two methods: in living embryos from a 3D reconstruction view, and in slices of embryos from a histology view. The damage of chorion integrity might have adverse effects on embryonic development. Moreover, for the first time the toxic effect of QDs was separated from the heavy metal toxicity, which is most commonly discussed in the literature to the toxicity of the QDs.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Puntos Cuánticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Animales , Compuestos de Cadmio/toxicidad , Embrión no Mamífero/fisiología , Nanopartículas , Oncorhynchus mykiss , Compuestos de Selenio/toxicidad , Sulfuros/toxicidad , Compuestos de Zinc/toxicidad
20.
Biochim Biophys Acta Gen Subj ; 1862(4): 914-923, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29288773

RESUMEN

BACKGROUND: Monolayer cell cultures have been considered the most suitable technique for in vivo cellular experiments. However, a lot of cellular functions and responses that are present in natural tissues are lost in two-dimensional cell cultures. In this context, nanoparticle accumulation data presented in literature are often not accurate enough to predict behavior of nanoparticles in vivo. Cellular spheroids show a higher degree of morphological and functional similarity to the tissues. METHODS: Accumulation and distribution of carboxylated CdSe/ZnS quantum dots (QDs), chosen as model nanoparticles, was investigated in cellular spheroids composed of different phenotype mammalian cells. The findings were compared with the results obtained in in vivo experiments with human tumor xenografts in immunodeficient mice. The diffusive transport model was used for theoretical nanoparticles distribution estimation. RESULTS: QDs were accumulated only in cells, which were localized in the periphery of cellular spheroids. CdSe/ZnS QDs were shown to be stable and inert; they did not have any side-effects for cellular spheroids formation. Penetration of QDs in both cellular spheroids and in vivo tumor model was limited. The mathematical model confirmed the experimental results: nanoparticles penetrated only 25µm into cellular spheroids after 24h of incubation. CONCLUSIONS: Penetration of negatively charged nanoparticles is limited not only in tumor tissue, but also in cellular spheroids. GENERAL SIGNIFICANCE: The results presented in this paper show the superior applicability of cellular spheroids to cell monolayers in the studies of the antitumor effect and penetration of nanomedicines.


Asunto(s)
Ácidos Carboxílicos/química , Nanopartículas/química , Puntos Cuánticos , Esferoides Celulares/química , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Compuestos de Cadmio/química , Compuestos de Cadmio/metabolismo , Ácidos Carboxílicos/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Humanos , Células MCF-7 , Ratones , Microscopía Confocal , Células 3T3 NIH , Nanopartículas/metabolismo , Compuestos de Selenio/química , Compuestos de Selenio/metabolismo , Esferoides Celulares/metabolismo , Sulfuros/química , Sulfuros/metabolismo , Trasplante Heterólogo , Compuestos de Zinc/química , Compuestos de Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...