Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Genet ; 1032024.
Artículo en Inglés | MEDLINE | ID: mdl-38258298

RESUMEN

The genus Indotyphlops has a widespread distribution in the Indian landmass and Southeast Asia, with 20 reported species. The current classification within the genus is based on morphology. In this study, we sampled all the reported Indotyphlops species from subcontinental India, to resolve relationships within this genus and to understand biogeographic patterns that resulted in the widespread distribution. We generated sequences for five nuclear markers which were used in the global typhlopoid phylogeny and built phylogenetic trees of the superfamily Typhlopoidea. We also carried out divergence time analysis and biogeographic analysis to understand the time and modes of dispersal and diversification of these species. The results show Indotyphlops sensu lato to be polyphyletic, with the clade consisting of I. porrectus and I. exiguus sister to a clade consisting of the southeast Asian typhlopid genera Ramphotyphlops, Anilios, Malayotyphlops, Acutotyphlops, Sundatyphlops, and Indotyphlops sensu stricto. The other clade consists of I. pammeces and I. braminus from the Indian subcontinent and I. albiceps from Southeast Asia. Biogeographical analysis suggests two dispersals from Asia to the Indian landmass-an earlier dispersal from Eurasia into India led to the lineage consisting of I. porrectus and I. exiguus, followed by a later dispersal that evolved into I. pammeces and I. braminus. These results necessitate a taxonomic revision. We propose the genus Pseudoindotyphlops gen. nov. for the clade currently consisting of the most recent common ancestor (MRCA) of I. porrectus and I. exiguus, and all descendants thereof.


Asunto(s)
Filogenia , Serpientes , India , Serpientes/genética , Animales
2.
Evolution ; 78(1): 146-159, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37930819

RESUMEN

The extreme asymmetry of species richness distribution across the tree of life has always intrigued evolutionary biologists. Two competing explanations have been proposed to explain this pattern-the clade age hypothesis and diversification rate variation. While these two scenarios may not be mutually exclusive, to what extent time and diversification rates interact to explain species richness patterns remains understudied. Here, we investigate the relative influence of these two scenarios using tarantulas (Family: Theraphosidae) as a model. Tarantulas represent a speciose group of spiders found worldwide but exceptionally diverse in South America. These spiders show two distinct patterns of microhabitat use (ground-dwelling or arboreal) and defense strategies (presence or absence of urticating hairs). Using various trait-independent and dependent diversification models, we test the clade age hypothesis, the role of microhabitat, antipredator defense strategy, and geography in influencing diversification rates. Our results suggest that clade age is the primary predictor of species richness distribution across the tarantula subfamilies. However, the presence of urticating hair probably disrupted this pattern in some clades by increasing the net diversification rates, not by increasing the speciation rate but by reducing the extinction rate.


Asunto(s)
Biodiversidad , Arañas , Animales , Filogenia , Evolución Biológica , Geografía , Especiación Genética
3.
Mol Phylogenet Evol ; 181: 107723, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36720420

RESUMEN

The Indian subcontinent is extremely diverse in terms of its flora and fauna. However, only a handful of studies have aimed to understand the diversity of freshwater invertebrates using multiple lines of evidence in recent times. Here we aimed to estimate the cryptic diversity of two widespread freshwater snail species within the genus Pila (Röding, 1798) and uncover the processes behind lineage diversification in these species. We sequenced mitochondrial and nuclear markers from a comprehensive sampling of specimens from different river basins in India. We implemented an integrative taxonomy approach to delimit the lineages in these groups, employing phylogenetic, geometric morphometric and niche modelling-based methods. Then, we investigated the drivers of lineage divergence in these species using population genetic tools in conjunction with divergence time estimation. We found that both species consist of several genetically and ecologically distinct lineages. The genetic data showed that several of these lineages are restricted to a single or a few river basins. The divergence time estimation analyses indicated that the time frame of divergence within the species coincided with paleohydrological and paleoclimatic events in the Miocene. The diversification was primarily driven by allopatric isolation into different river basins. To conclude, the study sheds light on the complex interaction between the habitat preference of the species and the environment in shaping the diversification patterns in this group.


Asunto(s)
ADN Mitocondrial , Ecosistema , Filogenia , ADN Mitocondrial/genética , Genética de Población , Agua Dulce , Filogeografía
4.
Ecol Evol ; 11(23): 16499-16513, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938452

RESUMEN

The Western Ghats (WG) mountain chain in peninsular India is a global biodiversity hotspot, one in which patterns of phylogenetic diversity and endemism remain to be documented across taxa. We used a well-characterized community of ancient soil predatory arthropods from the WG to understand diversity gradients, identify hotspots of endemism and conservation importance, and highlight poorly studied areas with unique biodiversity. We compiled an occurrence dataset for 19 species of scolopendrid centipedes, which was used to predict areas of habitat suitability using bioclimatic and geomorphological variables in Maxent. We used predicted distributions and a time-calibrated species phylogeny to calculate taxonomic and phylogenetic indices of diversity, endemism, and turnover. We observed a decreasing latitudinal gradient in taxonomic and phylogenetic diversity in the WG, which supports expectations from the latitudinal diversity gradient. The southern WG had the highest phylogenetic diversity and endemism, and was represented by lineages with long branch lengths as observed from relative phylogenetic diversity/endemism. These results indicate the persistence of lineages over evolutionary time in the southern WG and are consistent with predictions from the southern WG refuge hypothesis. The northern WG, despite having low phylogenetic diversity, had high values of phylogenetic endemism represented by distinct lineages as inferred from relative phylogenetic endemism. The distinct endemic lineages in this subregion might be adapted to life in lateritic plateaus characterized by poor soil conditions and high seasonality. Sites across an important biogeographic break, the Palghat Gap, broadly grouped separately in comparisons of species turnover along the WG. The southern WG and Nilgiris, adjoining the Palghat Gap, harbor unique centipede communities, where the causal role of climate or dispersal barriers in shaping diversity remains to be investigated. Our results highlight the need to use phylogeny and distribution data while assessing diversity and endemism patterns in the WG.

5.
J Genet ; 1002021.
Artículo en Inglés | MEDLINE | ID: mdl-34787114

RESUMEN

The phylogenetic position of the capped and golden langur (CG) lineage has been ambiguous owing to the discordance between phylogenies from multiple molecular markers. Previous molecular studies have hypothesised that this discordance likely arises from either a hybridization event that took place between the Indian genus Semnopithecus and the Southeast Asian genus Trachypithecus or from incomplete lineage sorting (ILS). Distinguishing between hybridization and ILS is challenging and these processes can lead to serious difficulties in inferring phylogenies. In this study, we used genetic markers (nine nuclear and eight mitochondrial) in conjunction with coalescent based species tree approach and a test for hybridization using posterior predictive checking to better understand the evolutionary origin of the CG lineage. Both the concatenated nuclear as well as the mitochondrial dataset recovered congruent relationships where CG lineage was sister to Trachypithecus. However, nuclear species tree estimated using different multispecies coalescent methods suggested an opposite result, i.e. CG lineage was sister to Semnopithecus. Hybridization analysis strongly indicates gene flow between Semnopithecus and Trachypithecus that likely gave rise to the hybrid CG lineage. Further, the CG lineage is morphologically intermediate between Semnopithecus and Trachypithecus with respect to skull and body measurements. In light of the above evidences, we argue that the CG lineage needs to be elevated to a new genus of its own. Taxonomic and conservation implications of these results are also discussed.


Asunto(s)
Evolución Biológica , Colobinae/genética , Animales , Colobinae/clasificación , Femenino , Marcadores Genéticos , Especiación Genética , Hibridación Genética , Masculino , Filogenia
6.
Mol Phylogenet Evol ; 157: 107064, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33387646

RESUMEN

The Indian subcontinent's unique geological history is reflected in the diverse assemblage of its biota. The blindsnake superfamily Typhlopoidea, with its unique mix of ancient as well as younger lineages in Asia, provides an opportunity to understand the various biotic exchange scenarios proposed for the Indian landmass. In this study, we aim to understand the biogeographic origins of the four genera of typhlopoids found in India and to decipher their times and modes of arrival in the subcontinent. Five nuclear markers were sequenced for 12 samples collected from across India, encompassing all four genera under study. Published sequences of typhlopoid genera were compiled and combined with Indian sequences to generate a global dataset. Phylogenetic relationships were reconstructed using maximum likelihood and Bayesian inference methods. Divergence times were estimated using BEAST 1.8.2. Ancestral geographical ranges were estimated using DEC + J, implemented in BioGeoBEARS. Divergence time estimates suggest that Gerrhopilus is an ancient lineage, and the lineage leading to it was present on the Indian landmass since the last 100 million years. The other three genera are more recent dispersals into India, possibly trans-oceanic. Biogeographic reconstructions suggest an East Gondwanan origin for Typhlopoidea, an African origin for Grypotyphlops and an Asian origin for Indotyphlops and Argyrophis. It appears that India harbours a combination of ancient and more recently dispersed lineages of typhlopoids. The genus Gerrhopilus is of Gondwanan origin that likely dispersed out of India into Southeast Asia. The other genera are intrusive elements that dispersed into India from Africa (Grypotyphlops) and Asia (Indotyphlops and possibly Argyrophis) post break-up of Gondwana. Thus, our study provides further evidence on the ability of blindsnakes to undergo long distance trans-oceanic dispersal. Results also suggest an Asian origin for typhlopoids from Australasia, Philippines and Wallacea.


Asunto(s)
Filogenia , Filogeografía , Serpientes/clasificación , Animales , Teorema de Bayes , Calibración , Fósiles , Geografía , India , Océanos y Mares , Factores de Tiempo
7.
J Evol Biol ; 33(1): 57-66, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31541555

RESUMEN

The "early-burst" model of adaptive radiation predicts an early increase in phenotypic disparity concurrent with lineage diversification. Although most studies report a lack of this coupled pattern, the underlying processes are not identified. The continental radiation of Hemidactylus geckos from Peninsular India includes morphologically diverse species that occupy various microhabitats. This radiation began diversifying ~36 Mya with an early increase in lineage diversification. Here, we test the "early-burst" hypothesis by investigating the presence of ecomorphs and examining the pattern of morphological diversification in a phylogenetic framework. Two ecomorphs-terrestrial and scansorial species-that vary significantly in body size and toepad size were identified. Unlike the prediction of the "early-burst" model, we find that disparity in toepad morphology accumulated more recently ~14 Mya and fit the Ornstein-Ulhenbeck model. Ancestral state reconstruction of the two ecomorphs demonstrates that terrestrial lineages evolved independently at least five times from scansorial ancestors, with the earliest diversification in terrestrial lineages 19-12 Mya. Our study demonstrates a delayed increase in morphological disparity as a result of the evolution of terrestrial ecomorphs. The diversification of terrestrial lineages is concurrent with the establishment of open habitat and grasslands in Peninsular India, suggesting that the appearance of this novel resource led to the adaptive diversification.


Asunto(s)
Ecosistema , Lagartos/clasificación , Filogenia , Adaptación Fisiológica , Animales , Especiación Genética , India , Lagartos/anatomía & histología
8.
Mol Phylogenet Evol ; 138: 174-181, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31129349

RESUMEN

The indian subcontinent has experienced numerous paleogeological and paleoclimatic events during the Cenozoic which shaped the biotic assembly over time in the subcontinent. The role of these events in governing the biotic exchange between Southeast Asia and Indian subregion is underexplored. We aimed to uncover the effects the collision of the Indian and Asian plate, marine transgression in the Bengal basin as well as the paleoclimatic changes in the subcontinent and adjoining regions, on the dispersal of freshwater snail family Viviparidae from Southeast Asia (SEA) to Indian subregion. Extensive sampling was carried out throughout the Indian subcontinent to capture the current diversity of the targeted lineages. Three mitochondrial and two nuclear markers were sequenced from these samples and combined with published sequences to reconstruct global phylogeny of Viviparidae. Molecular dating and ancestral range estimation were undertaken to obtain the time frame for the dispersal events. Results from these analyses were contrasted with paleoclimate and paleogeology to better understand the biogeography of Indian viviparids. Results support at least two dispersal events into India from Southeast Asia. The earlier event is likely to have occurred during a warm and humid Eocene period before a permanent land connection was established between the two landmasses. While the more recent dispersal occurred post-suturing and overlapped with a time in late Tertiary to Quaternary when arid climate prevailed. However, we could not firmly establish how the marine transgressions influenced the dispersal events. Even though most biotic exchange between India and SEA are noted to be post-suturing, our results add to a growing body of work that suggests faunal exchange pre-suturing probably mediated by intermittent land connections.


Asunto(s)
Migración Animal/fisiología , Cambio Climático , Agua Dulce , Geografía , Caracoles/fisiología , Animales , Secuencia de Bases , Teorema de Bayes , India , Funciones de Verosimilitud , Filogenia , Especificidad de la Especie
9.
PLoS Negl Trop Dis ; 12(12): e0006801, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30521518

RESUMEN

Many human parasites and pathogens have closely related counterparts among non-human primates. For example, non-human primates harbour several species of malaria causing parasites of the genus Plasmodium. Studies suggest that for a better understanding of the origin and evolution of human malaria parasites it is important to know the diversity and evolutionary relationships of these parasites in non-human primates. Much work has been undertaken on malaria parasites in wild great Apes of Africa as well as wild monkeys of Southeast Asia however studies are lacking from South Asia, particularly India. India is one of the major malaria prone regions in the world and exhibits high primate diversity which in turn provides ideal setting for both zoonoses and anthropozoonoses. In this study we report the molecular data for malaria parasites from wild populations of Indian non-human primates. We surveyed 349 fecal samples from five different Indian non-human primates, while 94 blood and tissue samples from one of the Indian non-human primate species (Macaca radiata) and one blood sample from M. mulatta. Our results confirm the presence of P. fragile, P. inui and P. cynomolgi in Macaca radiata. Additionally, we report for the first time the presence of human malarial parasite, P. falciparum, in M. mulatta and M. radiata. Additionally, our results indicate that M. radiata does not exhibit population structure probably due to human mediated translocation of problem monkeys. Human mediated transport of macaques adds an additional level of complexity to tacking malaria in human. This issue has implications for both the spread of primate as well as human specific malarias.


Asunto(s)
Macaca mulatta/parasitología , Macaca radiata/parasitología , Malaria/veterinaria , Enfermedades de los Monos/parasitología , Plasmodium/aislamiento & purificación , Animales , Heces/parasitología , Femenino , Humanos , India/epidemiología , Malaria/epidemiología , Malaria/parasitología , Masculino , Enfermedades de los Monos/epidemiología , Zoonosis
10.
Zootaxa ; 4027(1): 145-50, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26624173

RESUMEN

Skinks of the genus Eutropis represent one of the most widespread and speciose lizard groups in tropical Asia. Numerous recent studies have utilized a variety of genes and methods to reconstruct the phylogeny of these lizards, however these studies have not resolved the placement of one of the widely distributed Eutropis Fitzinger, E. dissimilis. We have sequenced a specimen of E. dissimilis from the type locality and our result suggests that it is part of the Indian radiation of Eutropis and not related to African Trachylepis Fitzinger or Southeast Asian Dasia Gray as previously suggested. Furthermore, we report that the sequence of E. dissimilis used in an earlier study of the once cosmopolitan genus 'Mabuya' may have been erroneously identified and appears to be a sequence of E. novemcarinata. We also demonstrate that the evolution of a clear lower eyelid, which was considered a synapomorphy for the sister genus Trachylepis, has arisen multiple times in Eutropis.


Asunto(s)
Lagartos/clasificación , Lagartos/genética , Filogenia , Distribución Animal , Animales , ADN Mitocondrial/genética
11.
Mol Phylogenet Evol ; 82 Pt A: 193-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25281922

RESUMEN

The subgenus Geckoella, the only ground-dwelling radiation within Cyrtodactylus, closely overlaps in distribution with brookii group Hemidactylus in peninsular India and Sri Lanka. Both groups have Oligocene origins, the latter with over thrice as many described species. The striking difference in species richness led us to believe that Geckoella diversity is underestimated, and we sampled for Geckoella across peninsular India. A multi-locus phylogeny reveals Geckoella diversity is hugely underestimated, with at least seven undescribed species, doubling previously known richness. Strikingly, the new species correspond to cryptic lineages within described Indian species (complexes); a number of these endemic lineages from the hills of peninsular India outside the Western Ghats, highlighting the undocumented diversity of the Indian dry zone. The Geckoella phylogeny demonstrates deep splits between the Indian species and Sri Lankan G. triedrus, and between Indian dry and wet zone clades, dating back to the late Oligocene. Geckoella and brookii group Hemidactylus show contrasting diversification patterns. Geckoella shows signals of niche conservatism and appears to have retained its ancestral forest habitat. The late Miocene burst in speciation in Geckoella may be linked to the expansion of rain forests during the mid-Miocene climatic optimum and subsequent fragmentation with increasing late Miocene aridification.


Asunto(s)
Evolución Biológica , Lagartos/clasificación , Filogenia , Animales , Teorema de Bayes , Ecosistema , India , Funciones de Verosimilitud , Lagartos/genética , Análisis de Secuencia de ADN , Sri Lanka
12.
Mol Phylogenet Evol ; 80: 145-55, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25108260

RESUMEN

The India-Asia collision profoundly influenced the climate, topography and biodiversity of Asia, causing the formation of the biodiverse Himalayas. The species-rich gekkonid genus Cyrtodactylus is an ideal clade for exploring the biological impacts of the India-Asia collision, as previous phylogenetic hypotheses suggest basal divergences occurred within the Himalayas and Indo-Burma during the Eocene. To this end, we sampled for Cyrtodactylus across Indian areas of the Himalayas and Indo-Burma Hotspots and used three genes to reconstruct relationships and estimate divergence times. Basal divergences in Cyrtodactylus, Hemidactylus and the Palaearctic naked-toed geckos were simultaneous with or just preceded the start of the India-Asia collision. Diversification within Cyrtodactylus tracks the India-Asia collision and subsequent geological events. A number of geographically concordant clades are resolved within Indo-Burmese Cyrtodactylus. Our study reveals 17 divergent lineages that may represent undescribed species, underscoring the previously undocumented diversity of the region. The importance of rocky habitats for Cyrtodactylus indicates the Indo-Gangetic flood plains and the Garo-Rajmahal Gap are likely to have been important historical barriers for this group.


Asunto(s)
Evolución Biológica , Lagartos/clasificación , Filogenia , Animales , Asia , Teorema de Bayes , Biodiversidad , India , Funciones de Verosimilitud , Lagartos/genética , Modelos Genéticos , Mianmar , Análisis de Secuencia de ADN
14.
PLoS One ; 9(2): e87804, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498377

RESUMEN

Hanuman langur is one of the widely distributed and extensively studied non-human diurnal primates in India. Until recently it was believed to be a single species - Semnopithecus entellus. Recent molecular and morphological studies suggest that the Hanuman langurs consists of at least three species S. entellus, S. hypoleucos and S. priam. Furthermore, morphological studies suggested that both S. hypoleucos and S. priam have at least three subspecies in each. We explored the use of ecological niche modeling (ENM) to confirm the validity of these seven taxa and an additional taxon S. johnii belonging to the same genus. MaxEnt modeling tool was used with 19 bioclimatic, 12 vegetation and 6 hydrological environmental layers. We reduced total environmental variables to 14 layers after testing for collinearity and an independent test for model prediction was done using ENMTools. A total of 196 non-overlapping data points from primary and secondary sources were used as inputs for ENM. Results showed eight distinct ecological boundaries, corroborating the eight taxa mentioned above thereby confirming validity of these eight taxa. The study, for the first time provided ecological variables that determined the ecological requirements and distribution of members of the Hanuman langur species complex in the Indian peninsula.


Asunto(s)
Algoritmos , Colobinae/clasificación , Ecología , Modelos Biológicos , Modelos Estadísticos , Animales , Entropía , Humanos , India , Filogenia
15.
PLoS One ; 8(5): e60615, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23696785

RESUMEN

UNLABELLED: BACKGROUND OF THE WORK: The phylogenetic position and evolution of Hemidactylus anamallensis (family Gekkonidae) has been much debated in recent times. In the past it has been variously assigned to genus Hoplodactylus (Diplodactylidae) as well as a monotypic genus 'Dravidogecko' (Gekkonidae). Since 1995, this species has been assigned to Hemidactylus, but there is much disagreement between authors regarding its phylogenetic position within this genus. In a recent molecular study H. anamallensis was sister to Hemidactylus but appeared distinct from it in both mitochondrial and nuclear markers. However, this study did not include genera closely allied to Hemidactylus, thus a robust evaluation of this hypothesis was not undertaken. METHODS: The objective of this study was to investigate the phylogenetic position of H. anamallensis within the gekkonid radiation. To this end, several nuclear and mitochondrial markers were sequenced from H. anamallensis, selected members of the Hemidactylus radiation and genera closely allied to Hemidactylus. These sequences in conjunction with published sequences were subjected to multiple phylogenetic analyses. Furthermore the nuclear dataset was also subjected to molecular dating analysis to ascertain the divergence between H. anamallensis and related genera. RESULTS AND CONCLUSION: Results showed that H. anamallensis lineage was indeed sister to Hemidactylus group but was separated from the rest of the Hemidactylus by a long branch. The divergence estimates supported a scenario wherein H. anamallensis dispersed across a marine barrier to the drifting peninsular Indian plate in the late Cretaceous whereas Hemidactylus arrived on the peninsular India after the Indian plate collided with the Eurasian plate. Based on these molecular evidence and biogeographical scenario we suggest that the genus Dravidogecko should be resurrected.


Asunto(s)
Lagartos/genética , Filogenia , Animales , Teorema de Bayes , Evolución Molecular , Lagartos/clasificación
16.
PLoS One ; 7(8): e42225, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22876311

RESUMEN

BACKGROUND: There has been growing interest in integrative taxonomy that uses data from multiple disciplines for species delimitation. Typically, in such studies, monophyly is taken as a proxy for taxonomic distinctiveness and these units are treated as potential species. However, monophyly could arise due to stochastic processes. Thus here, we have employed a recently developed tool based on coalescent approach to ascertain the taxonomic distinctiveness of various monophyletic units. Subsequently, the species status of these taxonomic units was further tested using corroborative evidence from morphology and ecology. This inter-disciplinary approach was implemented on endemic centipedes of the genus Digitipes (Attems 1930) from the Western Ghats (WG) biodiversity hotspot of India. The species of the genus Digitipes are morphologically conserved, despite their ancient late Cretaceous origin. PRINCIPAL FINDINGS: Our coalescent analysis based on mitochondrial dataset indicated the presence of nine putative species. The integrative approach, which includes nuclear, morphology, and climate datasets supported distinctiveness of eight putative species, of which three represent described species and five were new species. Among the five new species, three were morphologically cryptic species, emphasizing the effectiveness of this approach in discovering cryptic diversity in less explored areas of the tropics like the WG. In addition, species pairs showed variable divergence along the molecular, morphological and climate axes. CONCLUSIONS: A multidisciplinary approach illustrated here is successful in discovering cryptic diversity with an indication that the current estimates of invertebrate species richness for the WG might have been underestimated. Additionally, the importance of measuring multiple secondary properties of species while defining species boundaries was highlighted given variable divergence of each species pair across the disciplines.


Asunto(s)
Artrópodos/genética , Biodiversidad , Modelos Genéticos , Animales , Artrópodos/anatomía & histología , Artrópodos/clasificación , ADN Mitocondrial/genética , Evolución Molecular , India , Filogenia , Filogeografía , ARN Ribosómico 16S/genética , ARN Ribosómico 28S/genética
17.
Mol Phylogenet Evol ; 63(3): 817-24, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22406530

RESUMEN

Recent generic rearrangement of the circumtropical distributed skink genus 'Mabuya' has raised a lot of debate. According to this molecular phylogeny based rearrangement, the tropical Asian members of this genus have been assigned to Eutropis. However, in these studies the Asian members of 'Mabuya' were largely sampled from Southeast (SE) Asia with very few species from Indian subcontinent. To test the validity of this assignment and to determine the evolutionary origin of Indian members of this group we sequenced one nuclear and two mitochondrial genes from most of the species from the Indian subregion. The nuclear and mitochondrial trees generated from these sequences confirmed the monophyly of the tropical Asian Eutropis. Furthermore, in the tree based on the combined mitochondrial and nuclear dataset an endemic Indian radiation was revealed that was nested within a larger Asian clade. Results of dispersal-vicariance analysis and molecular dating suggested an initial dispersal of Eutropis from SE Asia into India around 5.5-17 million years ago, giving rise to the extant members of the endemic Indian radiation. This initial dispersal was followed by two back dispersals from India into SE Asia. We also discuss the relationships within the endemic Indian radiation and its taxonomic implications.


Asunto(s)
Lagartos/genética , Filogenia , Animales , Teorema de Bayes , Genes Mitocondriales , Genes mos , India , Funciones de Verosimilitud , Lagartos/clasificación , Modelos Genéticos , Tipificación de Secuencias Multilocus , Filogeografía , ARN Ribosómico/genética , ARN Ribosómico 16S/genética
18.
Mol Phylogenet Evol ; 60(3): 287-94, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21575731

RESUMEN

Given that peninsular India was part of the Gondwanan super continent, part of its current biota has Gondwanan origin. To determine the Gondwanan component of the peninsular Indian biota, a large number of species spanning diverse taxonomic groups need to be sampled from multiple, if not all, of the former Gondwanan fragments. Such a large scale phylogenetic approach will be time consuming and resource intensive. Here, we explore the utility of a limited sampling approach, wherein sampling is confined to one of the Gondwanan fragments (peninsular India), in identifying putative Gondwanan elements. To this end, samples of Scolopendrid centipedes from Western Ghats region of peninsular India were subjected to molecular phylogenetic and dating analyses. The resulting phylogenetic tree supported monophyly of the family Scolopendridae which was in turn split into two clades constituting tribes Otostigmini and Scolopendrini-Asanadini. Bayesian divergence date estimates suggested that the earliest diversifications within various genera were between 86 and 73mya, indicating that these genera might have Gondwanan origin. In particular, at least four genera of Scolopendrid centipedes, Scolopendra, Cormocephalus, Rhysida and Digitipes, might have undergone diversification on the drifting peninsular India during the Late Cretaceous. These putative Gondwanan taxa can be subjected to more extensive sampling to confirm their Gondwanan origin.


Asunto(s)
Artrópodos/clasificación , Evolución Biológica , Filogenia , Animales , Artrópodos/genética , Teorema de Bayes , ADN Mitocondrial/genética , Fósiles , India , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Mol Phylogenet Evol ; 57(1): 459-65, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20601015

RESUMEN

Represented by approximately 85 species, Hemidactylus is one of the most diverse and widely distributed genera of reptiles in the world. In the Indian subcontinent, this genus is represented by 28 species out of which at least 13 are endemic to this region. Here, we report the phylogeny of the Indian Hemidactylus geckos based on mitochondrial and nuclear DNA markers sequenced from multiple individuals of widely distributed as well as endemic congeners of India. Results indicate that a majority of the species distributed in India form a distinct clade whose members are largely confined to the Indian subcontinent thus representing a unique Indian radiation. The remaining Hemidactylus geckos of India belong to two other geographical clades representing the Southeast Asian and West-Asian arid zone species. Additionally, the three widely distributed, commensal species (H. brookii, H. frenatus and H. flaviviridis) are nested within the Indian radiation suggesting their Indian origin. Dispersal-vicariance analysis also supports their Indian origin and subsequent dispersal out-of-India into West-Asian arid zone and Southeast Asia. Thus, Indian subcontinent has served as an important arena for diversification amongst the Hemidactylus geckos and in the evolution and spread of its commensal geckos.


Asunto(s)
Evolución Molecular , Lagartos/genética , Filogenia , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , India , Lagartos/clasificación , Análisis de Secuencia de ADN
20.
BMC Evol Biol ; 10: 172, 2010 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-20537168

RESUMEN

BACKGROUND: Butterflies of the subtribe Mycalesina (Nymphalidae: Satyrinae) are important model organisms in ecology and evolution. This group has radiated spectacularly in the Old World tropics and presents an exciting opportunity to better understand processes of invertebrate rapid radiations. However, the generic-level taxonomy of the subtribe has been in a constant state of flux, and relationships among genera are unknown. There are six currently recognized genera in the group. Mycalesis, Lohora and Nirvanopsis are found in the Oriental region, the first of which is the most speciose genus among mycalesines, and extends into the Australasian region. Hallelesis and Bicyclus are found in mainland Africa, while Heteropsis is primarily Madagascan, with a few species in Africa. We infer the phylogeny of the group with data from three genes (total of 3139 bp) and use these data to reconstruct events in the biogeographic history of the group. RESULTS: The results indicate that the group Mycalesina radiated rapidly around the Oligocene-Miocene boundary. Basal relationships are unresolved, but we recover six well-supported clades. Some species of Mycalesis are nested within a primarily Madagascan clade of Heteropsis, while Nirvanopsis is nested within Lohora. The phylogeny suggests that the group had its origin either in Asia or Africa, and diversified through dispersals between the two regions, during the late Oligocene and early Miocene. The current dataset tentatively suggests that the Madagascan fauna comprises two independent radiations. The Australasian radiation shares a common ancestor derived from Asia. We discuss factors that are likely to have played a key role in the diversification of the group. CONCLUSIONS: We propose a significantly revised classification scheme for Mycalesina. We conclude that the group originated and radiated from an ancestor that was found either in Asia or Africa, with dispersals between the two regions and to Australasia. Our phylogeny paves the way for further comparative studies on this group that will help us understand the processes underlying diversification in rapid radiations of invertebrates.


Asunto(s)
Mariposas Diurnas/clasificación , Evolución Molecular , Especiación Genética , Filogenia , África , Animales , Australasia , Teorema de Bayes , Mariposas Diurnas/genética , Genes de Insecto , Geografía , Funciones de Verosimilitud , Madagascar , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA