Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Sci Rep ; 14(1): 5579, 2024 03 07.
Article En | MEDLINE | ID: mdl-38448721

Fetal growth restriction (FGR) is associated with aberrant placentation and accounts for a significant proportion of perinatal deaths. microRNAs have been shown to be dysregulated in FGR. The purpose of this study was to determine microRNA-regulated molecular pathways altered using a caloric restricted mouse model of FGR. Pregnant mice were subjected to a 50% caloric restricted diet beginning at E9. At E18.5, RNA sequencing of placental tissue was performed to identify differences in gene expression between caloric restricted and control placentas. Significant differences in gene expression between caloric restricted and control placentas were observed in 228 of the 1546 (14.7%) microRNAs. Functional analysis of microRNA-mRNA interactions demonstrated enrichment of several biological pathways with oxidative stress, apoptosis, and autophagy pathways upregulated and angiogenesis and signal transduction pathways downregulated. Ingenuity pathway analysis also suggested that ID1 signaling, a pathway integral for trophoblast differentiation, is also dysregulated in caloric restricted placentas. Thus, a maternal caloric restriction mouse model of FGR results in aberrant microRNA-regulated molecular pathways associated with angiogenesis, oxidative stress, signal transduction, apoptosis, and cell differentiation. As several of these pathways are dysregulated in human FGR, our findings suggest that this model may provide an excellent means to study placental microRNA derangements seen in FGR.


Caloric Restriction , MicroRNAs , Pregnancy , Humans , Female , Animals , Mice , Fetal Growth Retardation/genetics , Placenta , Disease Models, Animal , MicroRNAs/genetics , RNA, Messenger
2.
J Cardiovasc Dev Dis ; 10(9)2023 Sep 11.
Article En | MEDLINE | ID: mdl-37754820

microRNAs (miRs) are small non-coding single-stranded RNAs that regulate gene expression. We previously evaluated expression of miRs in the cardiac tissue of children with dilated cardiomyopathy (DCM) using miRNA-seq. However, a comparative analysis of serum and cardiac miRs has not been performed in this population. The current study aimed to evaluate miR levels in the serum of pediatric DCM patients compared to healthy non-failing (NF) donor controls and investigate the association between miR levels in tissue and sera from the same pediatric DCM patients. Defining the relationship between serum and tissue miRs may allow the use of circulating miRs as surrogate markers of cardiac miRs. miR levels were investigated through miR-array in sera [n = 10 NF, n = 12 DCM] and miR-seq in tissue (n = 10 NF, n = 12 DCM). Pathway analysis was investigated using the miR enrichment analysis and annotation tool (miEAA) for the five miRs commonly dysregulated in the sera and tissue of pediatric DCM patients. Functional analysis of miRs commonly dysregulated in the sera and tissue of pediatric DCM patients suggests altered pathways related to cell growth, differentiation and proliferation, inflammation, mitochondrial function, and metabolism. These findings suggest that circulating miRs could reflect altered levels of cardiac tissue miRs.

3.
JCI Insight ; 8(16)2023 08 22.
Article En | MEDLINE | ID: mdl-37606047

We investigated the extent, biologic characterization, phenotypic specificity, and possible regulation of a ß1-adrenergic receptor-linked (ß1-AR-linked) gene signaling network (ß1-GSN) involved in left ventricular (LV) eccentric pathologic remodeling. A 430-member ß1-GSN was identified by mRNA expression in transgenic mice overexpressing human ß1-ARs or from literature curation, which exhibited opposite directional behavior in interventricular septum endomyocardial biopsies taken from patients with beta-blocker-treated, reverse remodeled dilated cardiomyopathies. With reverse remodeling, the major biologic categories and percentage of the dominant directional change were as follows: metabolic (19.3%, 81% upregulated); gene regulation (14.9%, 78% upregulated); extracellular matrix/fibrosis (9.1%, 92% downregulated); and cell homeostasis (13.3%, 60% upregulated). Regarding the comparison of ß1-GSN categories with expression from 19,243 nonnetwork genes, phenotypic selection for major ß1-GSN categories was exhibited for LV end systolic volume (contractility measure), ejection fraction (remodeling index), and pulmonary wedge pressure (wall tension surrogate), beginning at 3 months and persisting to study completion at 12 months. In addition, 121 lncRNAs were identified as possibly involved in cis-acting regulation of ß1-GSN members. We conclude that an extensive 430-member gene network downstream from the ß1-AR is involved in pathologic ventricular remodeling, with metabolic genes as the most prevalent category.


Biological Products , Cardiomyopathy, Dilated , Animals , Mice , Humans , Cardiomyopathy, Dilated/genetics , Gene Regulatory Networks , Signal Transduction , Mice, Transgenic , Receptors, Adrenergic
4.
Sci Rep ; 13(1): 12195, 2023 07 27.
Article En | MEDLINE | ID: mdl-37500700

Early detection of cancer is vital for the best chance of successful treatment, but half of all cancers are diagnosed at an advanced stage. A simple and reliable blood screening test applied routinely would therefore address a major unmet medical need. To gain insight into the value of protein biomarkers in early detection and stratification of cancer we determined the time course of changes in the plasma proteome of mice carrying transplanted human lung, breast, colon, or ovarian tumors. For protein measurements we used an aptamer-based assay which simultaneously measures ~ 5000 proteins. Along with tumor lineage-specific biomarkers, we also found 15 markers shared among all cancer types that included the energy metabolism enzymes glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phophate isomerase and dihydrolipoyl dehydrogenase as well as several important biomarkers for maintaining protein, lipid, nucleotide, or carbohydrate balance such as tryptophanyl t-RNA synthetase and nucleoside diphosphate kinase. Using significantly altered proteins in the tumor bearing mice, we developed models to stratify tumor types and to estimate the minimum detectable tumor volume. Finally, we identified significantly enriched common and unique biological pathways among the eight tumor cell lines tested.


Ovarian Neoplasms , Proteome , Female , Humans , Mice , Animals , Proteome/metabolism , Biomarkers, Tumor/metabolism , Energy Metabolism , Cell Line, Tumor
5.
JACC Basic Transl Sci ; 8(3): 258-279, 2023 Mar.
Article En | MEDLINE | ID: mdl-37034285

The mechanisms responsible for heart failure in single-ventricle congenital heart disease are unknown. Using explanted heart tissue, we showed that failing single-ventricle hearts have dysregulated metabolic pathways, impaired mitochondrial function, decreased activity of carnitine palmitoyltransferase activity, and altered functioning of the tricarboxylic acid cycle. Interestingly, nonfailing single-ventricle hearts demonstrated an intermediate metabolic phenotype suggesting that they are vulnerable to development of heart failure in the future. Mitochondrial targeted therapies and treatments aimed at normalizing energy generation could represent a novel approach to the treatment or prevention of heart failure in this vulnerable group of patients.

6.
Circ Heart Fail ; 16(6): e010291, 2023 06.
Article En | MEDLINE | ID: mdl-36880380

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. Pathogenic germline variation in genes encoding the sarcomere is the predominant cause of disease. However diagnostic features, including unexplained left ventricular hypertrophy, typically do not develop until late adolescence or after. The early stages of disease pathogenesis and the mechanisms underlying the transition to a clinically overt phenotype are not well understood. In this study, we investigated if circulating microRNAs (miRNAs) could stratify disease stage in sarcomeric HCM. METHODS: We performed arrays for 381 miRNAs using serum from HCM sarcomere variant carriers with and without a diagnosis of HCM and healthy controls. To identify differentially expressed circulating miRNAs between groups, multiple approaches were used including random forest, Wilcoxon rank sum test, and logistic regression. The abundance of all miRNAs was normalized to miRNA-320. RESULTS: Of 57 sarcomere variant carriers, 25 had clinical HCM and 32 had subclinical HCM with normal left ventricular wall thickness (21 with early phenotypic manifestations and 11 with no discernible phenotypic manifestations). Circulating miRNA profile differentiated healthy controls from sarcomere variant carriers with subclinical and clinical disease. Additionally, circulating miRNAs differentiated clinical HCM from subclinical HCM without early phenotypic changes; and subclinical HCM with and without early phenotypic changes. Circulating miRNA profiles did not differentiate clinical HCM from subclinical HCM with early phenotypic changes, suggesting biologic similarity between these groups. CONCLUSIONS: Circulating miRNAs may augment the clinical stratification of HCM and improve understanding of the transition from health to disease in sarcomere gene variant carriers.


Cardiomyopathy, Hypertrophic , Circulating MicroRNA , Heart Failure , MicroRNAs , Humans , Sarcomeres/genetics , Circulating MicroRNA/genetics , Mutation , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Phenotype , MicroRNAs/genetics
7.
Sci Rep ; 12(1): 14560, 2022 08 26.
Article En | MEDLINE | ID: mdl-36028738

Acute respiratory distress syndrome is a heterogeneous pathophysiological process responsible for significant morbidity and mortality in pediatric intensive care patients. Diagnosis is defined by clinical characteristics that identify the syndrome after development. Subphenotyping patients at risk of progression to ARDS could provide the opportunity for therapeutic intervention. microRNAs, non-coding RNAs stable in circulation, are a promising biomarker candidate. We conducted a single-center prospective cohort study to evaluate random forest classification of microarray-quantified circulating microRNAs in critically ill pediatric patients. We additionally selected a sub-cohort for parallel metabolomics profiling as a pilot study for concurrent use of miRNAs and metabolites as circulating biomarkers. In 35 patients (n = 21 acute respiratory distress, n = 14 control) 15 microRNAs were differentially expressed. Unsupervised random forest classification accurately grouped ARDS and control patients with an area under the curve of 0.762, which was improved to 0.839 when subset to only patients with bacterial infection. Nine metabolites were differentially abundant between acute respiratory distress and control patients (n = 4, both groups) and abundance was highly correlated with miRNA expression. Random forest classification of microRNAs differentiated critically ill pediatric patients who developed acute respiratory distress relative to those who do not. The differential expression of microRNAs and metabolites provides a strong foundation for further work to validate their use as a prognostic biomarker.


MicroRNAs , Respiratory Distress Syndrome , Biomarkers , Child , Cohort Studies , Critical Illness , Humans , Pilot Projects , Prospective Studies
8.
J Plast Reconstr Aesthet Surg ; 75(9): 2982-2990, 2022 09.
Article En | MEDLINE | ID: mdl-35915016

BACKGROUND: Dopamine has a favorable therapeutic profile but has not been widely used to treat hypotension during microvascular breast reconstruction. The purpose of this study was to evaluate outcomes in patients who received dopamine during breast reconstruction using deep inferior epigastric perforator (DIEP) free flaps and compare them with patients who did not receive dopamine. METHODS: A single-center retrospective review was performed for patients who underwent breast reconstruction with DIEP free flaps between October 2018 and March 2020. Patient demographics, comorbidities, fluid balance, hospital stay, and adverse outcomes were compared between patients who received at least 1 h of dopamine (DA) and patients who did not receive dopamine (ND). Subgroup analyses were performed for bilateral procedures and patients who received dopamine. RESULTS: Twenty-five patients in the DA group and 43 patients in the ND group met the inclusion criteria. There were no flap-related complications. Patients who had dopamine initiated to maintain blood pressures had a higher total volume of intravenous fluid (ND:3.81L vs. DA:5.04L, p = 0.005). However, DA patients exhibited decreased fluid requirements (ND:839 mL/h vs. DA:479 mL/h, p = 0.004) and increased urine output (ND:98.0 mL/h vs. DA:340 mL/h, p = <0.001) once dopamine was initiated. Intraoperative urine output (ND:1.37 L vs. DA:3.48 L, p < 0.001) and rate (ND:1.9 ml/kg/h vs. DA:3.7 ml/kg/h, p < 0.001) were increased in the DA group. The fluid balance of patients undergoing bilateral procedures was closer to neutral for patients who received dopamine (ND:+3.43 L vs. DA:+2.26 L, p = 0.03). CONCLUSION: Dopamine is safe to use in microvascular breast reconstruction. It may be beneficial for hemodynamically labile patients by stabilizing blood pressure and facilitating a neutral fluid balance.


Breast Neoplasms , Hypotension , Mammaplasty , Perforator Flap , Breast Neoplasms/etiology , Breast Neoplasms/surgery , Dopamine/therapeutic use , Epigastric Arteries/surgery , Female , Humans , Hypotension/drug therapy , Hypotension/etiology , Hypotension/surgery , Mammaplasty/adverse effects , Mammaplasty/methods , Perforator Flap/blood supply , Retrospective Studies
9.
J Cardiovasc Dev Dis ; 9(2)2022 Jan 23.
Article En | MEDLINE | ID: mdl-35200691

Twin-twin transfusion syndrome (TTTS) is a rare but serious cause of fetal cardiomyopathy with poorly understood pathophysiology and challenging prognostication. This study sought a nonbiased, comprehensive assessment of amniotic fluid (AF) microRNAs from TTTS pregnancies and associations of these miRNAs with clinical characteristics. For the discovery cohort, AF from ten fetuses with severe TTTS cardiomyopathy were selected and compared to ten normal singleton AF. Array panels assessing 384 microRNAs were performed on the discovery cohort and controls. Using a stringent q < 0.0025, arrays identified 32 miRNAs with differential expression. Top three microRNAs were miR-99b, miR-370 and miR-375. Forty distinct TTTS subjects were selected for a validation cohort. RT-PCR targeted six differentially-expressed microRNAs in the discovery and validation cohorts. Expression differences by array were confirmed by RT-PCR with high fidelity. The ability of these miRNAs to predict clinical differences, such as cardiac findings and later demise, was evaluated on TTTS subjects. Down-regulation of miRNA-127-3p, miRNA-375-3p and miRNA-886 were associated with demise. Our results indicate AF microRNAs have potential as a diagnostic and prognostic biomarker in TTTS. The top microRNAs have previously demonstrated roles in angiogenesis, cardiomyocyte stress response and hypertrophy. Further studies of the mechanism of actions and potential targets is warranted.

10.
Pediatr Res ; 92(1): 98-108, 2022 07.
Article En | MEDLINE | ID: mdl-34012027

BACKGROUND: MicroRNAs (miRNAs) are short single-stranded nucleotides that can regulate gene expression. Although we previously evaluated the expression of miRNAs in pediatric dilated cardiomyopathy (DCM) by miRNA array, pathway prediction based on changes in mRNA expression has not been previously analyzed in this population. The current study aimed to determine the regulation of miRNA expression by miRNA-sequencing (miRNA-seq) and, through miRNA-sequencing (mRNA-seq), analyze their putative target genes and altered pathways in pediatric DCM hearts. METHODS: miRNA expression was determined by miRNA-seq [n = 10 non-failing (NF), n = 20 DCM]. Expression of a subset of miRNAs was evaluated in adult DCM patients (n = 11 NF, n = 13 DCM). miRNA-mRNA prediction analysis was performed using mRNA-seq data (n = 7 NF, n = 7 DCM) from matched samples. RESULTS: Expression of 393 miRNAs was significantly different (p < 0.05) in pediatric DCM patients compared to NF controls. TargetScan-based miRNA-mRNA analysis revealed 808 significantly inversely expressed genes. Functional analysis suggests upregulated pathways related to the regulation of stem cell differentiation and cardiac muscle contraction, and downregulated pathways related to the regulation of protein phosphorylation, signal transduction, and cell communication. CONCLUSIONS: Our results demonstrated a unique age-dependent regulation of miRNAs and their putative target genes, which may contribute to distinctive phenotypic characteristics of DCM in children. IMPACT: This is the first study to compare miRNA expression in the heart of pediatric DCM patients to age-matched healthy controls by RNA sequencing. Expression of a subset of miRNAs is uniquely dysregulated in children. Using mRNA-seq and miRNA-seq from matched samples, target prediction was performed. This study underscores the importance of pediatric-focused studies.


Cardiomyopathy, Dilated , MicroRNAs , Adult , Cardiomyopathy, Dilated/genetics , Child , Gene Expression Profiling , Heart , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , Sequence Analysis, RNA
11.
JCI Insight ; 6(19)2021 10 08.
Article En | MEDLINE | ID: mdl-34383712

Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and main indication for heart transplantation in children. Therapies specific to pediatric DCM remain limited due to lack of a disease model. Our previous study showed that treatment of neonatal rat ventricular myocytes (NRVMs) with serum from nonfailing or DCM pediatric patients activates the fetal gene program (FGP). Here we show that serum treatment with proteinase K prevents activation of the FGP, whereas RNase treatment exacerbates it, suggesting that circulating proteins, but not circulating miRNAs, promote these pathological changes. Evaluation of the protein secretome showed that midkine (MDK) is upregulated in DCM serum, and NRVM treatment with MDK activates the FGP. Changes in gene expression in serum-treated NRVMs, evaluated by next-generation RNA-Seq, indicated extracellular matrix remodeling and focal adhesion pathways were upregulated in pediatric DCM serum and in DCM serum-treated NRVMs, suggesting alterations in cellular stiffness. Cellular stiffness was evaluated by Atomic Force Microscopy, which showed an increase in stiffness in DCM serum-treated NRVMs. Of the proteins increased in DCM sera, secreted frizzled-related protein 1 (sFRP1) was a potential candidate for the increase in cellular stiffness, and sFRP1 treatment of NRVMs recapitulated the increase in cellular stiffness observed in response to DCM serum treatment. Our results show that serum circulating proteins promoted pathological changes in gene expression and cellular stiffness, and circulating miRNAs were protective against pathological changes.


Cardiomyopathy, Dilated/genetics , Extracellular Matrix/drug effects , Focal Adhesions/drug effects , Myocytes, Cardiac/drug effects , Transcriptome/drug effects , Ventricular Remodeling/drug effects , Adolescent , Animals , Animals, Newborn , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Child , Child, Preschool , Endopeptidase K/pharmacology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Focal Adhesions/metabolism , Focal Adhesions/pathology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/pharmacology , Male , Microscopy, Atomic Force , Midkine/metabolism , Midkine/pharmacology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , RNA-Seq , Rats , Ribonucleases/pharmacology , Secretome , Ventricular Remodeling/genetics
12.
Am J Obstet Gynecol ; 225(4): 439.e1-439.e10, 2021 10.
Article En | MEDLINE | ID: mdl-34153234

BACKGROUND: Twin-twin transfusion syndrome presents many challenges for clinicians, and the optimal means of identifying pregnancies that will benefit most from intervention is controversial. There is currently no clinically available biomarker to detect twin-twin transfusion syndrome or to stratify cases based on the risk factors. microRNAs are small RNAs that regulate gene expression and are biomarkers for various disease processes, including adult and pediatric heart failure. To date, no studies have investigated amniotic fluid microRNAs as biomarkers for disease severity, specifically for severe recipient cardiomyopathy in twin-twin transfusion syndrome cases. OBJECTIVE: This study aimed to assess whether amniotic fluid microRNAs could be useful as biomarkers to identify pregnancies at greatest risk for severe recipient cardiomyopathy associated with twin-twin transfusion syndrome. STUDY DESIGN: Amniotic fluid was collected at the time of amnioreduction or selective fetoscopic laser photocoagulation from monochorionic diamniotic twin pregnancies with twin-twin transfusion syndrome at any stage. Fetal echocardiography was performed on all twins before the procedure, and severe cardiomyopathy was defined as a right ventricular myocardial performance index of the recipient fetus of >4 Z-scores. microRNA was extracted from the amniotic fluid samples and analyzed using an array panel assessing 379 microRNAs (TaqMan Open Array, ThermoFisher). Student t tests were performed to determine significant differences in microRNA expression between pregnancies with severe recipient cardiomyopathy and those with preserved cardiac function. A stringent q value of <.0025 was used to determine differential microRNA expression. Random forest plots identified the top 3 microRNAs that separated the 2 groups, and hierarchical cluster analysis was used to determine if these microRNAs properly segregated the samples according to their clinical groups. RESULTS: A total of 14 amniotic fluid samples from pregnancies with twin-twin transfusion syndrome with severe cardiomyopathy were compared with samples from 12 twin-twin transfusion syndrome control cases with preserved cardiac function. A total of 110 microRNAs were identified in the amniotic fluid samples. Twenty microRNAs were differentially expressed, and the top 3 differentiating microRNAs were hsa-miR-200c-3p, hsa-miR-17-5p, and hsa-miR-539-5p. Hierarchical cluster analysis based on these top 3 microRNAs showed a strong ability to differentiate severe cardiomyopathy cases from controls. The top 3 microRNAs were used to investigate the sensitivity and specificity of these microRNAs to differentiate between the 2 groups with a receiver operating characteristic curve demonstrating sensitivity and specificity of 80.8%. All 20 differentially expressed microRNAs were down-regulated in the group with severe cardiomyopathy. CONCLUSION: Amniotic fluid microRNAs demonstrated differential expression between twin-twin transfusion syndrome recipient fetuses with severe cardiomyopathy and those without and have the potential to be important biomarkers of disease severity in this population.


Amniotic Fluid/metabolism , Cardiomyopathies/metabolism , Fetofetal Transfusion/metabolism , MicroRNAs/metabolism , Adult , Biomarkers/metabolism , Cardiomyopathies/diagnosis , Case-Control Studies , Cluster Analysis , Down-Regulation , Drainage , Echocardiography , Female , Fetofetal Transfusion/therapy , Fetoscopy , Humans , Light Coagulation , Pregnancy , Severity of Illness Index , Ultrasonography, Prenatal , Young Adult
13.
J Mol Cell Cardiol ; 159: 28-37, 2021 10.
Article En | MEDLINE | ID: mdl-34139234

AIMS: Pediatric dilated cardiomyopathy (pDCM) is characterized by unique age-dependent molecular mechanisms that include myocellular responses to therapy. We previously showed that pDCM, but not adult DCM patients respond to phosphodiesterase 3 inhibitors (PDE3i) by increasing levels of the second messenger cAMP and consequent phosphorylation of phospholamban (PLN). However, the molecular mechanisms involved in the differential pediatric and adult response to PDE3i are not clear. METHODS AND RESULTS: Quantification of serum response factor (SRF) isoforms from the left ventricle of explanted hearts showed that PDE3i treatment affects expression of SRF isoforms in pDCM hearts. An SRF isoform lacking exon 5 (SRFdel5) was highly expressed in the hearts of pediatric, but not adult DCM patients treated with PDE3i. To determine the functional consequence of expression of SRFdel5, we overexpressed full length SRF or SRFdel5 in cultured cardiomyocytes with and without adrenergic stimulation. Compared to a control adenovirus, expression of SRFdel5 increased phosphorylation of PLN, negatively affected expression of the phosphatase that promotes dephosphorylation of PLN (PP2Cε), and promoted faster calcium reuptake, whereas expression of full length SRF attenuated calcium reuptake through blunted phosphorylation of PLN. CONCLUSIONS: Taken together, these data indicate that expression of SRFdel5 in pDCM hearts in response to PDE3i contributes to improved function through regulating PLN phosphorylation and thereby calcium reuptake.


Calcium-Binding Proteins/metabolism , Calcium/metabolism , Phosphorylation/physiology , Animals , Cardiomyopathy, Dilated/metabolism , Cell Line , Female , HEK293 Cells , Heart Ventricles/metabolism , Humans , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Serum Response Factor/metabolism
14.
Mol Cancer Res ; 19(7): 1123-1136, 2021 07.
Article En | MEDLINE | ID: mdl-33846123

Prostate cancer genomic subtypes that stratify aggressive disease and inform treatment decisions at the primary stage are currently limited. Previously, we functionally validated an aggressive subtype present in 15% of prostate cancer characterized by dual deletion of MAP3K7 and CHD1. Recent studies in the field have focused on deletion of CHD1 and its role in androgen receptor (AR) chromatin distribution and resistance to AR-targeted therapy; however, CHD1 is rarely lost without codeletion of MAP3K7. Here, we show that in the clinically relevant context of co-loss of MAP3K7 and CHD1 there are significant, collective changes to aspects of AR signaling. Although CHD1 loss mainly impacts the expansion of the AR cistrome, loss of MAP3K7 drives increased AR target gene expression. Prostate cancer cell line models engineered to cosuppress MAP3K7 and CHD1 also demonstrated increased AR-v7 expression and resistance to the AR-targeting drug enzalutamide. Furthermore, we determined that low protein expression of both genes is significantly associated with biochemical recurrence (BCR) in a clinical cohort of radical prostatectomy specimens. Low MAP3K7 expression, however, was the strongest independent predictor for risk of BCR over all other tested clinicopathologic factors including CHD1 expression. Collectively, these findings illustrate the importance of MAP3K7 loss in a molecular subtype of prostate cancer that poses challenges to conventional therapeutic approaches. IMPLICATIONS: These findings strongly implicate MAP3K7 loss as a biomarker for aggressive prostate cancer with significant risk for recurrence that poses challenges for conventional androgen receptor-targeted therapies.


DNA Helicases/genetics , DNA-Binding Proteins/genetics , MAP Kinase Kinase Kinases/genetics , Prostatic Neoplasms/genetics , RNA Interference , Receptors, Androgen/genetics , Signal Transduction/genetics , Androgens/pharmacology , Benzamides/pharmacology , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Logistic Models , MAP Kinase Kinase Kinases/metabolism , Male , Neoplasm Recurrence, Local , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Risk Factors
15.
Cardiol Young ; 31(9): 1393-1400, 2021 Sep.
Article En | MEDLINE | ID: mdl-33533327

BACKGROUND: Milrinone is a phosphodiesterase type 3 inhibitor that results in a positive inotropic effect in the heart through an increase in cyclic adenosine monophosphate. The purpose of this study was to evaluate circulating cyclic adenosine monophosphate and milrinone concentrations in milrinone treated paediatric patients undergoing congenital heart surgery. METHODS: Single-centre prospective observational pilot study from January 2015 to December 2017 including children aged birth to 18 years. Milrinone and circulating cyclic adenosine monophosphate concentrations were measured at four time points through the first post-operative day and compared between patients with and without low cardiac output syndrome, defined using clinical and laboratory criteria. RESULTS: Fifty patients were included. Nine (18%) developed low cardiac output syndrome. For all patients, 22% had single ventricle heart disease. The density and distribution of cyclic adenosine monophosphate concentrations varied between those with and without low cardiac output syndrome but were not significantly different. Milrinone concentrations increased in all patients. Paired t-tests demonstrated an increase in circulating cyclic adenosine monophosphate concentrations during the post-operative period among patients without low cardiac output syndrome. CONCLUSIONS: In this prospective observational study, circulating cyclic adenosine monophosphate concentrations increased in those without low cardiac output syndrome during the first 24 post-operative hours and milrinone concentrations increased in all patients. Further study of the utility of cyclic adenosine monophosphate concentrations in milrinone treated patients is necessary.


Heart Defects, Congenital , Milrinone , Adenosine Monophosphate , Cardiac Output, Low/drug therapy , Cardiotonic Agents/therapeutic use , Child , Heart Defects, Congenital/drug therapy , Heart Defects, Congenital/surgery , Humans , Prospective Studies
16.
J Mol Cell Cardiol ; 146: 12-18, 2020 09.
Article En | MEDLINE | ID: mdl-32634388

BACKGROUND: Kawasaki Disease (KD) is an acute vasculitis of unknown etiology in children that can lead to coronary artery lesions (CAL) in 25% of untreated patients. There is currently no diagnostic test for KD, and the clinical presentation is often difficult to differentiate from other febrile childhood illnesses. Circulating microRNAs (miRNAs) are small noncoding RNA molecules that control gene expression by inducing transcript degradation or by blocking translation. We hypothesize that the expression of circulating miRNAs will differentiate KD from non-KD febrile illnesses in children. METHODS: Circulating miRNA profiles from 84 KD patients and 29 non-KD febrile controls (7 viral and 22 bacterial infections) were evaluated. 3 ul of serum from each subject was submitted to 3 freeze/heat cycles to ensure miRNA release from microvesicles or interaction with serum proteins. miRNAs were reverse transcribed using a pool of primers specific for each miRNA. Real-time PCR reactions were performed in a 384 well plate containing sequence-specific primers and TaqMan probes in the ABI7900. '. RESULTS: KD patients (3.6 ± 2.2 yrs., 58% male) were found to have a unique circulating miRNA profile, including upregulation of miRNA-210-3p, -184, and -19a-3p (p < .0001), compared to non-KD febrile controls (8.5 ± 6.1 yrs., 72% male). CONCLUSIONS: Circulating miRNAs can differentiate KD from infectious febrile childhood diseases, supporting their potential as a diagnostic biomarker for KD.


Circulating MicroRNA/blood , Fever/blood , Fever/genetics , Infections/blood , Infections/genetics , Mucocutaneous Lymph Node Syndrome/blood , Mucocutaneous Lymph Node Syndrome/genetics , Biomarkers/blood , Case-Control Studies , Child , Child, Preschool , Circulating MicroRNA/genetics , Female , Fever/complications , Gene Regulatory Networks , Humans , Immunoglobulins, Intravenous/therapeutic use , Infant , Infections/complications , Male , Mucocutaneous Lymph Node Syndrome/drug therapy
17.
Physiol Genomics ; 52(6): 245-254, 2020 06 01.
Article En | MEDLINE | ID: mdl-32421439

Oxidative stress is a key contributor to the development of dysregulated inflammation in acute lung injury (ALI). A naturally occurring single nucleotide polymorphism in the key extracellular antioxidant enzyme, extracellular superoxide dismutase (EC-SOD), results in an arginine to glycine substitution (R213G) that promotes resolution of inflammation and protection against bleomycin-induced ALI. Previously we found that mice harboring the R213G mutation in EC-SOD exhibit a transcriptomic profile consistent with a striking suppression of inflammatory and immune pathways 7 days postbleomycin. However, the alterations in noncoding regulatory RNAs in wild-type (WT) and R213G EC-SOD lungs have not been examined. Therefore, we used next-generation microRNA (miR) Sequencing of lung tissue to identify dysregulated miRs 7 days after bleomycin in WT and R213G mice. Differential expression analysis identified 92 WT and 235 R213G miRs uniquely dysregulated in their respective genotypes. Subsequent pathway analysis identified that these miRs were predicted to regulate approximately half of the differentially expressed genes previously identified. The gene targets of these altered miRs indicate suppression of immune and inflammatory pathways in the R213G mice versus activation of these pathways in WT mice. Triggering receptor expressed on myeloid cells 1 (TREM1) signaling was identified as the inflammatory pathway with the most striking difference between WT and R213G lungs. miR-486b-3p was identified as the most dysregulated miR predicted to regulate the TREM1 pathway. We validated the increase in TREM1 signaling using miR-486b-3p antagomir transfection. These findings indicate that differential miR regulation is predicted to regulate the inflammatory gene profile, contributing to the protection against ALI in R213G mice.


Acute Lung Injury/genetics , Bleomycin/pharmacology , Inflammation/genetics , MicroRNAs/genetics , Superoxide Dismutase/genetics , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Animals , Antibiotics, Antineoplastic/pharmacology , Disease Models, Animal , Female , Genotype , Inflammation/immunology , Inflammation/metabolism , Male , Mice , MicroRNAs/metabolism , Mutation , Polymorphism, Single Nucleotide , RAW 264.7 Cells , Superoxide Dismutase/metabolism , Transcriptome , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Triggering Receptor Expressed on Myeloid Cells-1/metabolism
18.
Reprod Sci ; 26(8): 1139-1145, 2019 08.
Article En | MEDLINE | ID: mdl-30453833

BACKGROUND: Intraindividual copy number variation (CNV) origin is largely unknown. They might be due to aging and/or common genome instability at the preimplantation stage while contribution of preimplantation in human intraindividual CNVs occurrence is unknown. To address this question, we investigated mosaicism and its origin in the fetuses of natural conception. METHODS: We studied normal fetuses following therapeutic abortion due to maternal indications. We analyzed the genome of 22 tissues of each fetus by array comparative genomic hybridization for intraindividual CNVs. Each tissue was studied in 2 microarray experiments; the reciprocal aberrations larger than 40 Kb, identified by comparing tissues of each fetus, were subsequently validated using quantitative polymerase chain reaction. RESULTS: Through intraindividual comparison, frequency of reciprocal events varied from 2 to 9. According to the distribution pattern of the frequent CNV in derivatives of different germ layers, we found that its origin is early development including preimplantation, whereas CNVs with low frequency have occurred in later stages. Shared CNVs in both fetuses were belonged to thymus and related to the functional role of genes located in these CNVs. CONCLUSIONS: The origin of some of fetal CNVs is preimplantation stage. Each organ might inherit CNVs with an unpredictable pattern due to the extensive cell mixing/migration in embryonic development.


DNA Copy Number Variations , Fetus , Genetic Variation , Mosaicism , Comparative Genomic Hybridization , DNA Mutational Analysis , Female , Humans , Male , Pregnancy
19.
Plast Reconstr Surg ; 143(2): 490-494, 2019 02.
Article En | MEDLINE | ID: mdl-30531622

Keloids are benign fibroproliferative skin tumors that can cause disfigurement and disability. Although they frequently recur after excision or medical management and can affect 6 to 16 percent of African Americans, there is no gold standard therapy. Keloids are challenging to study because there are no animal or in vitro models of this disorder. This makes it very difficult to validate data from treated tissue samples or cells and develop targeted therapies for this disease. In this study, the authors demonstrate that intralesional 5-fluorouracil injection after keloid excision prevents recurrence for 2 years, with no reported adverse events. The authors analyze the expression of treated and untreated biopsy specimens of the same keloids in their native context to capture insights that may be missed by in vitro cell culture models and correct for intrakeloid variability. Random forest analysis of the microarray data dramatically increased the statistical power of the authors' results, permitting hypothesis-free creation of a gene expression profile of 5-fluorouracil-treated keloids. Through this analysis, the authors found a set of genes, including YAP1 and CCL-2, whose expression changes predict 5-fluorouracil therapy status and include genes that have not previously been associated with keloid biology and are of unknown function. The authors further describe keloid heterogeneity for the first time using multidimensional analysis of their microarray results. The methods and tools the authors developed in this research may overcome some of the challenges in studying keloids and developing effective treatments for this disease. CLINICAL QUESTION/LEVEL OF EVIDENCE:: Therapeutic, V.


Dermis/pathology , Fluorouracil/administration & dosage , Keloid/drug therapy , Adaptor Proteins, Signal Transducing/metabolism , Biopsy , Chemokine CCL2/metabolism , Dermis/surgery , Follow-Up Studies , Gene Expression Profiling , Humans , Injections, Intralesional , Keloid/pathology , Keloid/surgery , Phosphoproteins/metabolism , Recurrence , Transcription Factors , Treatment Outcome , YAP-Signaling Proteins
20.
Circ Heart Fail ; 11(9): e004571, 2018 09.
Article En | MEDLINE | ID: mdl-30354365

Background Single ventricle (SV) congenital heart disease is fatal without intervention, and eventual heart failure is a major cause of morbidity and mortality. Although there are no proven medical therapies for the treatment or prevention of heart failure in the SV heart disease population, phosphodiesterase-5 inhibitors (PDE5i), such as sildenafil, are increasingly used. Although the pulmonary vasculature is the primary target of PDE5i therapy in patients with SV heart disease, the effects of PDE5i on the SV heart disease myocardium remain largely unknown. We sought to determine PDE5 expression and activity in the single right ventricle of SV heart disease patients relative to nonfailing controls and to determine whether PDE5 impacts cardiomyocyte remodeling using a novel serum-based in vitro model. Methods and Results PDE5 expression (n=9 nonfailing; n=7 SV heart disease), activity (n=8 nonfailing; n=9 SV heart disease), and localization (n=3 SV heart disease) were determined in explanted human right ventricle myocardium. PDE5 is expressed in SV heart disease cardiomyocytes, and PDE5 protein expression and activity are increased in SV heart disease right ventricle compared with nonfailing right ventricle. Isolated neonatal rat ventricular myocytes were treated for 72 hours with nonfailing or SV heart disease patient serum±sildenafil. Reverse transcription quantitative polymerase chain reaction (n=5 nonfailing; n=12 SV heart disease) and RNA sequencing (n=3 nonfailing; n=3 SV heart disease) were performed on serum-treated neonatal rat ventricular myocytes and demonstrated that treatment with SV heart disease sera results in pathological gene expression changes that are attenuated with PDE5i. Conclusions PDE5 is increased in failing SV heart disease myocardium, and pathological gene expression changes in SV heart disease serum-treated neonatal rat ventricular myocytes are abrogated by PDE5i. These results suggest that PDE5 represents an intriguing myocardial therapeutic target in this population.


Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Heart Defects, Congenital/enzymology , Heart Failure/enzymology , Heart Ventricles/enzymology , Myocytes, Cardiac/enzymology , Ventricular Function, Right , Ventricular Remodeling , Animals , Animals, Newborn , Case-Control Studies , Cells, Cultured , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Heart Defects, Congenital/physiopathology , Heart Failure/physiopathology , Heart Ventricles/abnormalities , Heart Ventricles/physiopathology , Humans , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Phosphodiesterase 5 Inhibitors/pharmacology , Rats, Sprague-Dawley , Up-Regulation
...