Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1110, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919399

RESUMEN

The noisy and high-dimensional nature of biological data has spawned advanced clustering algorithms that are tailored for specific biological datatypes. However, the performance of such methods varies greatly between datasets and they require post hoc tuning of cryptic hyperparameters. We present k minimal distance (KMD) clustering, a general-purpose method based on a generalization of single and average linkage hierarchical clustering. We introduce a generalized silhouette-like function to eliminate the cryptic hyperparameter k, and use sampling to enable application to million-object datasets. Rigorous comparisons to general and specialized clustering methods on simulated, mass cytometry and scRNA-seq datasets show consistent high performance of KMD clustering across all datasets.


Asunto(s)
Algoritmos , Análisis de Secuencia de ARN/métodos , Análisis por Conglomerados
2.
Nucleic Acids Res ; 51(3): 1103-1119, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36629266

RESUMEN

The Hi-C method has revolutionized the study of genome organization, yet interpretation of Hi-C interaction frequency maps remains a major challenge. Genomic compartments are a checkered Hi-C interaction pattern suggested to represent the partitioning of the genome into two self-interacting states associated with active and inactive chromatin. Based on a few elementary mechanistic assumptions, we derive a generative probabilistic model of genomic compartments, called deGeco. Testing our model, we find it can explain observed Hi-C interaction maps in a highly robust manner, allowing accurate inference of interaction probability maps from extremely sparse data without any training of parameters. Taking advantage of the interpretability of the model parameters, we then test hypotheses regarding the nature of genomic compartments. We find clear evidence of multiple states, and that these states self-interact with different affinities. We also find that the interaction rules of chromatin states differ considerably within and between chromosomes. Inspecting the molecular underpinnings of a four-state model, we show that a simple classifier can use histone marks to predict the underlying states with 87% accuracy. Finally, we observe instances of mixed-state loci and analyze these loci in single-cell Hi-C maps, finding that mixing of states occurs mainly at the cell level.


Asunto(s)
Cromatina , Genoma , Genómica/métodos , Cromosomas , Probabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...