Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 628: 122267, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36209980

RESUMEN

Bacterial nanocellulose has been widely investigated for wound healing applications, mainly due to its moisturizing capabilities and biocompatibility. Even though the topical therapy of nail diseases could benefit from these properties, this application has not yet been investigated. Therefore, actively hydrating nail patches based on bacterial nanocellulose were developed to improve the delivery of ciclopirox olamine and Boswellia serrata extract through the nail plate. The nanocellulose matrix was used to enable the application of hydration enhancing solutions based on glycerol and urea as a mechanically stable patch. While the favorable mechanical characteristics of the material remained unchanged, an increase of the incorporated glycerol concentration enhanced the transparency and wetting capacity of the patches. A biphasic drug release from the patches could be observed for drug and extract with a faster release for the hydrophilic ciclopirox olamine. High glycerol concentrations correlated with increased cumulative release and permeation through keratin films for drug and extract, demonstrating the hydration driven permeation enhancement. Patches containing ciclopirox olamine showed strong antimycotic effects against relevant pathogens for onychomycosis. The present finding proposed the combination of bacterial nanocellulose with glycerol, urea and different drug as a promising platform for the local treatment of nail diseases.


Asunto(s)
Enfermedades de la Uña , Onicomicosis , Humanos , Ciclopirox/farmacología , Ciclopirox/uso terapéutico , Antifúngicos , Glicerol , Piridonas , Onicomicosis/tratamiento farmacológico , Uñas , Enfermedades de la Uña/tratamiento farmacológico , Administración Tópica , Excipientes/farmacología , Urea , Extractos Vegetales/farmacología
2.
Nanomaterials (Basel) ; 11(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34443772

RESUMEN

Inflammation is a hallmark of tissue remodeling during wound healing. The inflammatory response to wounds is tightly controlled and well-coordinated; dysregulation compromises wound healing and causes persistent inflammation. Topical application of natural anti-inflammatory products may improve wound healing, in particular under chronic pathological conditions. The long-chain metabolites of vitamin E (LCM) are bioactive molecules that mediate cellular effects via oxidative stress signaling as well as anti-inflammatory pathways. However, the effect of LCM on wound healing has not been investigated. We administered the α-tocopherol-derived LCMs α-13'-hydroxychromanol (α-13'-OH) and α-13'-carboxychromanol (α-13'-COOH) as well as the natural product garcinoic acid, a δ-tocotrienol derivative, in different pharmaceutical formulations directly to wounds using a splinted wound mouse model to investigate their effects on the wounds' proinflammatory microenvironment and wound healing. Garcinoic acid and, in particular, α-13'-COOH accelerated wound healing and quality of the newly formed tissue. We next loaded bacterial nanocellulose (BNC), a valuable nanomaterial used as a wound dressing with high potential for drug delivery, with α-13'-COOH. The controlled release of α-13'-COOH using BNC promoted wound healing and wound closure, mainly when a diabetic condition was induced before the injury. This study highlights the potential of α-13'-COOH combined with BNC as a potential active wound dressing for the advanced therapy of skin injuries.

3.
Nanomaterials (Basel) ; 10(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327519

RESUMEN

Natural products suited for prophylaxis and therapy of inflammatory diseases have gained increasing importance. These compounds could be beneficially integrated into bacterial cellulose (BC), which is a natural hydropolymer applicable as a wound dressing and drug delivery system alike. This study presents experimental outcomes for a natural anti-inflammatory product concept of boswellic acids from frankincense formulated in BC. Using esterification respectively (resp.) oxidation and subsequent coupling with phenylalanine and tryptophan, post-modification of BC was tested to facilitate lipophilic active pharmaceutical ingredient (API) incorporation. Diclofenac sodium and indomethacin were used as anti-inflammatory model drugs before the findings were transferred to boswellic acids. By acetylation of BC fibers, the loading efficiency for the more lipophilic API indomethacin and the release was increased by up to 65.6% and 25%, respectively, while no significant differences in loading could be found for the API diclofenac sodium. Post-modifications could be made while preserving biocompatibility, essential wound dressing properties and anti-inflammatory efficacy. Eventually, in vitro wound closure experiments and evaluations of the effect of secondary dressings completed the study.

4.
Int J Pharm ; 587: 119635, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32693288

RESUMEN

The combination of the anti-inflammatory lipophilic Boswellia serrata extract with the natural hydropolymer bacterial nanocellulose (BNC) for the treatment of skin diseases is counteracted by their different hydro/lipophilicity. To overcome the hydrophilicity of the BNC, the water in its network was exchanged by single and double nanoemulsions. Incorporation of the Boswellia serrata extract in the nanoemulsions formed particles of about 115 to 150 nm with negative zeta potential and storage stability over 30 days at temperatures between 4 and 32 °C. Their loading into the BNC did not change the preferential characteristics of the nanocellulose like water absorption and retention, softness, and pressure stability in a relevant way. Loaded BNC could be sterilized by an electron-beam procedure. A biphasic drug release profile of lead compounds was observed by Franz cell diffusion test. The biocompatibility of the loaded BNC was confirmed ex ovo by a shell-less hen's egg test. Tape stripping experiments using porcine skin determined a dependency of the drug penetration into skin on the type of nanoemulsion, single vs. repeated applications and the incubation time. In conclusion, the hydrophilicity of BNC could be overcome using nanoemulsions which offers the possibility for the anti-inflammatory skin treatment with Boswellia serrata extract.


Asunto(s)
Boswellia , Enfermedades de la Piel , Animales , Vendajes , Pollos , Femenino , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA