Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38853987

RESUMEN

Infection with clade I Mpox virus (MPXV) results in adverse pregnancy outcomes, yet the potential for vertical transmission resulting in fetal harm with clade IIb MPXV, the clade that is currently circulating in the Western Hemisphere, remains unknown. We established a rhesus macaque model of vertical MPXV transmission with early gestation inoculation. Three pregnant rhesus macaques were inoculated intradermally with 1.5 × 10^5 plaque forming units (PFU) of clade IIb MPXV near gestational day (GD) 30 and animals were monitored for viremia and maternal and fetal well-being. Animals were euthanized to collect tissues at 5, 14, or 25 days post-inoculation (dpi). Tissues were evaluated for viral DNA (vDNA) loads, infectious virus titers, histopathology, MPXV mRNA and protein localization, as well as MPXV protein co-localization with placental cells including, Hofbauer cells, mesenchymal stromal cells, endothelial cells, and trophoblasts. vDNA was detected in maternal blood and skin lesions by 5 dpi. Lack of fetal heartbeat was observed at 14 or 25 dpi for two dams indicating fetal demise; the third dam developed significant vaginal bleeding at 5 dpi and was deemed an impending miscarriage. vDNA was detected in placental and fetal tissue in both fetal demise cases. MPXV localized to placental villi by ISH and IHC. Clade IIb MPXV infection in pregnant rhesus macaques results in vertical transmission to the fetus and adverse pregnancy outcomes, like clade I MPXV. Further studies are needed to determine whether antiviral therapy with tecovirimat will prevent vertical transmission and improve pregnancy outcomes. One Sentence Summary: Clade IIb Mpox virus infection of pregnant rhesus macaques results in vertical transmission from mother to fetus and adverse pregnancy outcomes.

2.
J Immunol ; 212(11): 1754-1765, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639635

RESUMEN

Mauritian-origin cynomolgus macaques (MCMs) serve as a powerful nonhuman primate model in biomedical research due to their unique genetic homogeneity, which simplifies experimental designs. Despite their extensive use, a comprehensive understanding of crucial immune-regulating gene families, particularly killer Ig-like receptors (KIR) and NK group 2 (NKG2), has been hindered by the lack of detailed genomic reference assemblies. In this study, we employ advanced long-read sequencing techniques to completely assemble eight KIR and seven NKG2 genomic haplotypes, providing an extensive insight into the structural and allelic diversity of these immunoregulatory gene clusters. Leveraging these genomic resources, we prototype a strategy for genotyping KIR and NKG2 using short-read, whole-exome capture data, illustrating the potential for cost-effective multilocus genotyping at colony scale. These results mark a significant enhancement for biomedical research in MCMs and underscore the feasibility of broad-scale genetic investigations.


Asunto(s)
Haplotipos , Macaca fascicularis , Receptores KIR , Animales , Receptores KIR/genética , Macaca fascicularis/genética , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Genómica/métodos , Genotipo
3.
Genome Res ; 33(3): 448-462, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36854669

RESUMEN

Macaques provide the most widely used nonhuman primate models for studying the immunology and pathogenesis of human diseases. Although the macaque major histocompatibility complex (MHC) region shares most features with the human leukocyte antigen (HLA) region, macaques have an expanded repertoire of MHC class I genes. Although a chimera of two rhesus macaque MHC haplotypes was first published in 2004, the structural diversity of MHC genomic organization in macaques remains poorly understood owing to a lack of adequate genomic reference sequences. We used ultralong Oxford Nanopore and high-accuracy Pacific Biosciences (PacBio) HiFi sequences to fully assemble the ∼5.2-Mb M3 haplotype of an MHC-homozygous, Mauritian-origin cynomolgus macaque (Macaca fascicularis). The MHC homozygosity allowed us to assemble a single MHC haplotype unambiguously and avoid chimeric assemblies that hampered previous efforts to characterize this exceptionally complex genomic region in macaques. The high quality of this new assembly is exemplified by the identification of an extended cluster of six Mafa-AG genes that contains a recent duplication with a highly similar ∼48.5-kb block of sequence. The MHC class II region of this M3 haplotype is similar to the previously sequenced rhesus macaque haplotype and HLA class II haplotypes. The MHC class I region, in contrast, contains 13 MHC-B genes, four MHC-A genes, and three MHC-E genes (vs. 19 MHC-B, two MHC-A, and one MHC-E in the previously sequenced haplotype). These results provide an unambiguously assembled single contiguous cynomolgus macaque MHC haplotype with fully curated gene annotations that will inform infectious disease and transplantation research.


Asunto(s)
Complejo Mayor de Histocompatibilidad , Animales , Humanos , Macaca fascicularis/genética , Haplotipos , Macaca mulatta/genética , Complejo Mayor de Histocompatibilidad/genética , Análisis de Secuencia de ADN/métodos , Alelos
4.
Gigascience ; 112022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35640223

RESUMEN

BACKGROUND: The Syrian hamster (Mesocricetus auratus) has been suggested as a useful mammalian model for a variety of diseases and infections, including infection with respiratory viruses such as SARS-CoV-2. The MesAur1.0 genome assembly was generated in 2013 using whole-genome shotgun sequencing with short-read sequence data. Current more advanced sequencing technologies and assembly methods now permit the generation of near-complete genome assemblies with higher quality and greater continuity. FINDINGS: Here, we report an improved assembly of the M. auratus genome (BCM_Maur_2.0) using Oxford Nanopore Technologies long-read sequencing to produce a chromosome-scale assembly. The total length of the new assembly is 2.46 Gb, similar to the 2.50-Gb length of a previous assembly of this genome, MesAur1.0. BCM_Maur_2.0 exhibits significantly improved continuity, with a scaffold N50 that is 6.7 times greater than MesAur1.0. Furthermore, 21,616 protein-coding genes and 10,459 noncoding genes are annotated in BCM_Maur_2.0 compared to 20,495 protein-coding genes and 4,168 noncoding genes in MesAur1.0. This new assembly also improves the unresolved regions as measured by nucleotide ambiguities, where ∼17.11% of bases in MesAur1.0 were unresolved compared to BCM_Maur_2.0, in which the number of unresolved bases is reduced to 3.00%. CONCLUSIONS: Access to a more complete reference genome with improved accuracy and continuity will facilitate more detailed, comprehensive, and meaningful research results for a wide variety of future studies using Syrian hamsters as models.


Asunto(s)
Cromosomas de los Mamíferos , Mesocricetus , Animales , Cromosomas de los Mamíferos/genética , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mesocricetus/genética , Secuenciación Completa del Genoma
5.
BMC Genomics ; 22(1): 182, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33711930

RESUMEN

BACKGROUND: Oxford Nanopore Technologies' instruments can sequence reads of great length. Long reads improve sequence assemblies by unambiguously spanning repetitive elements of the genome. Sequencing reads of significant length requires the preservation of long DNA template molecules through library preparation by pipetting reagents as slowly as possible to minimize shearing. This process is time-consuming and inconsistent at preserving read length as even small changes in volumetric flow rate can result in template shearing. RESULTS: We have designed SNAILS (Slow Nucleic Acid Instrument for Long Sequences), a 3D-printable instrument that automates slow pipetting of reagents used in long read library preparation for Oxford Nanopore sequencing. Across six sequencing libraries, SNAILS preserved more reads exceeding 100 kilobases in length and increased its libraries' average read length over manual slow pipetting. CONCLUSIONS: SNAILS is a low-cost, easily deployable solution for improving sequencing projects that require reads of significant length. By automating the slow pipetting of library preparation reagents, SNAILS increases the consistency and throughput of long read Nanopore sequencing.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Secuenciación de Nucleótidos de Alto Rendimiento , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN
6.
medRxiv ; 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33655260

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-CoV-2 RNA. From July 16 to November 19, 2020, 4,704 surveillance samples were collected from volunteers and tested for SARS-CoV-2 at 5 sites. A total of 21 samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, while 8 were negative for SARS-CoV-2 RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We estimated the RT-LAMP assay's false-negative rate from July 16 to September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or less and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP negative pools (2,493 samples) testing positive in the more sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and can effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing modalities.

7.
J Biomol Tech ; 32(3): 228-275, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35136384

RESUMEN

As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.


Asunto(s)
COVID-19 , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de Ácido Nucleico para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Pandemias , ARN Viral , SARS-CoV-2/aislamiento & purificación
8.
J Biomol Tech ; 32(3): 137-147, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35035293

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-CoV-2 RNA. From July 16, 2020, to November 19, 2020, surveillance samples (n = 4704) were collected from volunteers and tested for SARS-CoV-2 at 5 sites. Twenty-one samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, whereas 8 tested negative for SARS-CoV-2 RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We estimated the false-negative rate of the RT-LAMP assay only from July 16, 2020, to September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or fewer and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP-negative pools (2493 total samples) testing positive in the more-sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and that can effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing modalities.


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba de COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , Sensibilidad y Especificidad
9.
J Immunol ; 205(12): 3319-3332, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33208458

RESUMEN

The rhesus macaque is an important animal model for AIDS and other infectious diseases. However, the investigation of Fc-mediated Ab responses in macaques is complicated by species-specific differences in FcγRs and IgG subclasses relative to humans. To assess the effects of these differences on FcγR-IgG interactions, reporter cell lines expressing common allotypes of human and rhesus macaque FcγR2A and FcγR3A were established. FcγR-mediated responses to B cells were measured in the presence of serial dilutions of anti-CD20 Abs with Fc domains corresponding to each of the four subclasses of human and rhesus IgG and with Fc variants of IgG1 that enhance binding to FcγR2A or FcγR3A. All of the FcγRs were functional and preferentially recognized either IgG1 or IgG2. Whereas allotypes of rhesus FcγR2A were identified with responses similar to variants of human FcγR2A with higher (H131) and lower (R131) affinity for IgG, all of the rhesus FcγR3A allotypes exhibited responses most similar to the higher affinity V158 variant of human FcγR3A. Unlike responses to human IgGs, there was little variation in FcγR-mediated responses to different subclasses of rhesus IgG. Phylogenetic comparisons suggest that this reflects limited sequence variation of macaque IgGs as a result of their relatively recent diversification from a common IGHG gene since humans and macaques last shared a common ancestor. These findings reveal species-specific differences in FcγR-IgG interactions with important implications for investigating Ab effector functions in macaques.


Asunto(s)
Linfocitos B/inmunología , Inmunoglobulina G/inmunología , Receptores de IgG/inmunología , Animales , Línea Celular , Humanos , Macaca mulatta
10.
Immunogenetics ; 72(4): 225-239, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32112172

RESUMEN

Many medical advancements-including improvements to anti-rejection therapies in transplantation and vaccine development-rely on preclinical studies conducted in cynomolgus macaques (Macaca fascicularis). Major histocompatibility complex (MHC) class I and class II genes of cynomolgus macaques are orthologous to human leukocyte antigen complex (HLA) class I and class II genes, respectively. Both encode cell-surface proteins involved in cell recognition and rejection of non-host tissues. MHC class I and class II genes are highly polymorphic, so comprehensive genotyping requires the development of complete databases of allelic variants. Our group used PacBio circular consensus sequencing of full-length cDNA amplicons to characterize MHC class I and class II transcript sequences for a cohort of 293 Indonesian cynomolgus macaques (ICM) in a large, pedigreed breeding colony. These studies allowed us to expand the existing database of Macaca fascicularis (Mafa) alleles by identifying an additional 141 MHC class I and 61 class II transcript sequences. In addition, we defined co-segregating combinations of allelic variants as regional haplotypes for 70 Mafa-A, 78 Mafa-B, and 45 Mafa-DRB gene clusters. Finally, we defined class I and class II transcripts that are associated with 100 extended MHC haplotypes in this breeding colony by combining our genotyping analyses with short tandem repeat (STR) patterns across the MHC region. Our sequencing analyses and haplotype definitions improve the utility of these ICM for transplantation studies as well as infectious disease and vaccine research.


Asunto(s)
Haplotipos , Macaca fascicularis/genética , Complejo Mayor de Histocompatibilidad/genética , Animales , Cruzamiento , Indonesia , Repeticiones de Microsatélite
11.
Immunogenetics ; 71(8-9): 531-544, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31321455

RESUMEN

Indian rhesus macaque major histocompatibility complex (MHC) variation can influence the outcomes of transplantation and infectious disease studies. Frequently, rhesus macaques are MHC genotyped to identify variants that could account for unexpected results. Since the MHC is only one region in the genome where variation could impact experimental outcomes, strategies for simultaneously profiling variation in the macaque MHC and the remainder of the protein coding genome would be useful. Here we determine MHC class I and class II genotypes using target-capture probes enriched for MHC sequences, a method we term macaque exome sequence (MES) genotyping. For a cohort of 27 Indian rhesus macaques, we describe two methods for obtaining MHC genotypes from MES data and demonstrate that the MHC class I and class II genotyping results obtained with these methods are 98.1% and 98.7% concordant, respectively, with expected MHC genotypes. In contrast, conventional MHC genotyping results obtained by deep sequencing of short multiplex PCR amplicons were only 92.6% concordant with expectations for this cohort.


Asunto(s)
Exoma/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Macaca mulatta/genética , Polimorfismo Genético , Animales , Haplotipos , Secuenciación del Exoma
12.
J Immunol ; 202(1): 151-159, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30530595

RESUMEN

The FcγRs are immune cell surface proteins that bind IgG and facilitate cytokine production, phagocytosis, and Ab-dependent, cell-mediated cytotoxicity. FcγRs play a critical role in immunity; variation in these genes is implicated in autoimmunity and other diseases. Cynomolgus macaques are an excellent animal model for many human diseases, and Mauritian cynomolgus macaques (MCMs) are particularly useful because of their restricted genetic diversity. Previous studies of MCM immune gene diversity have focused on the MHC and killer cell Ig-like receptor. In this study, we characterize FcγR diversity in 48 MCMs using PacBio long-read sequencing to identify novel alleles of each of the four expressed MCM FcγR genes. We also developed a high-throughput FcγR genotyping assay, which we used to determine allele frequencies and identify FcγR haplotypes in more than 500 additional MCMs. We found three alleles for FcγR1A, seven each for FcγR2A and FcγR2B, and four for FcγR3A; these segregate into eight haplotypes. We also assessed whether different FcγR alleles confer different Ab-binding affinities by surface plasmon resonance and found minimal difference in binding affinities across alleles for a panel of wild type and Fc-engineered human IgG. This work suggests that although MCMs may not fully represent the diversity of FcγR responses in humans, they may offer highly reproducible results for mAb therapy and toxicity studies.


Asunto(s)
Genotipo , Macaca fascicularis , Receptores de IgG/genética , Alelos , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Frecuencia de los Genes , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunidad , Inmunoglobulina G/metabolismo , Modelos Animales , Unión Proteica/genética , Receptores de IgG/metabolismo
13.
Immunogenetics ; 70(7): 449-458, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29594415

RESUMEN

Baboons are valuable models for complex human diseases due to their genetic and physiologic similarities to humans. Deep sequencing methods to characterize full-length major histocompatibility complex (MHC) class I (MHC-I) alleles in different nonhuman primate populations were used to identify novel MHC-I alleles in baboons. We combined data from Illumina MiSeq sequencing and Roche/454 sequencing to characterize novel full-length MHC-I transcripts in a cohort of olive and hybrid olive/yellow baboons from the Southwest National Primate Research Center (SNPRC). We characterized 57 novel full-length alleles from 24 baboons and found limited genetic diversity at the MHC-I A locus, with significant sharing of two MHC-I A lineages between 22 out of the 24 animals characterized. These shared alleles provide the basis for development of tools such as MHC:peptide tetramers for studying cellular immune responses in this important animal model.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/genética , Papio anubis/genética , Papio cynocephalus/genética , Alelos , Animales , Frecuencia de los Genes/genética , Genes MHC Clase I/genética , Variación Genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Antígenos de Histocompatibilidad Clase I/inmunología , Complejo Mayor de Histocompatibilidad/genética , Complejo Mayor de Histocompatibilidad/inmunología , Papio anubis/inmunología , Papio cynocephalus/inmunología , Filogenia , Primates/genética
14.
Immunogenetics ; 70(6): 381-399, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29134258

RESUMEN

Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.


Asunto(s)
Genes MHC Clase I/genética , Macaca nemestrina/genética , Macaca nemestrina/inmunología , Alelos , Secuencia de Aminoácidos , Animales , Clonación Molecular/métodos , VIH , Haplotipos/inmunología , Antígenos de Histocompatibilidad/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Complejo Mayor de Histocompatibilidad/inmunología , Virus de la Inmunodeficiencia de los Simios
15.
Immunogenetics ; 69(5): 325-339, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28343239

RESUMEN

Killer cell immunoglobulin-like receptors (KIRs) modulate disease progression of pathogens including HIV, malaria, and hepatitis C. Cynomolgus and rhesus macaques are widely used as nonhuman primate models to study human pathogens, and so, considerable effort has been put into characterizing their KIR genetics. However, previous studies have relied on cDNA cloning and Sanger sequencing that lack the throughput of current sequencing platforms. In this study, we present a high throughput, full-length allele discovery method utilizing Pacific Biosciences circular consensus sequencing (CCS). We also describe a new approach to Macaque Exome Sequencing (MES) and the development of the Rhexome1.0, an adapted target capture reagent that includes macaque-specific capture probe sets. By using sequence reads generated by whole genome sequencing (WGS) and MES to inform primer design, we were able to increase the sensitivity of KIR allele discovery. We demonstrate this increased sensitivity by defining nine novel alleles within a cohort of Mauritian cynomolgus macaques (MCM), a geographically isolated population with restricted KIR genetics that was thought to be completely characterized. Finally, we describe an approach to genotyping KIRs directly from sequence reads generated using WGS/MES reads. The findings presented here expand our understanding of KIR genetics in MCM by associating new genes with all eight KIR haplotypes and demonstrating the existence of at least one KIR3DS gene associated with every haplotype.


Asunto(s)
Exoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Macaca fascicularis/genética , Receptores KIR/genética , Animales , Frecuencia de los Genes , Macaca fascicularis/inmunología , Análisis de Secuencia de ADN/métodos
16.
Immunogenetics ; 69(4): 211-229, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28078358

RESUMEN

Very little is currently known about the major histocompatibility complex (MHC) region of cynomolgus macaques (Macaca fascicularis; Mafa) from Chinese breeding centers. We performed comprehensive MHC class I haplotype analysis of 100 cynomolgus macaques from two different centers, with animals from different reported original geographic origins (Vietnamese, Cambodian, and Cambodian/Indonesian mixed-origin). Many of the samples were of known relation to each other (sire, dam, and progeny sets), making it possible to characterize lineage-level haplotypes in these animals. We identified 52 Mafa-A and 74 Mafa-B haplotypes in this cohort, many of which were restricted to specific sample origins. We also characterized full-length MHC class I transcripts using Pacific Biosciences (PacBio) RS II single-molecule real-time (SMRT) sequencing. This technology allows for complete read-through of unfragmented MHC class I transcripts (~1100 bp in length), so no assembly is required to unambiguously resolve novel full-length sequences. Overall, we identified 311 total full-length transcripts in a subset of 72 cynomolgus macaques from these Chinese breeding facilities; 130 of these sequences were novel and an additional 115 extended existing short database sequences to span the complete open reading frame. This significantly expands the number of Mafa-A, Mafa-B, and Mafa-I full-length alleles in the official cynomolgus macaque MHC class I database. The PacBio technique described here represents a general method for full-length allele discovery and genotyping that can be extended to other complex immune loci such as MHC class II, killer immunoglobulin-like receptors, and Fc gamma receptors.


Asunto(s)
Haplotipos/genética , Macaca fascicularis/genética , Complejo Mayor de Histocompatibilidad/genética , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN/métodos , Alelos , Animales , Cruzamiento , China , Frecuencia de los Genes , Genotipo
17.
Conserv Genet Resour ; 8(1): 23-26, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27182286

RESUMEN

Immunogenetic data from wild primate populations have been difficult to obtain, due to logistic and methodological constraints. We applied a well-characterized deep sequencing method for MHC I typing, developed for macaques, to a population of wild red colobus to assess the feasibility of identifying MHC I-A/B haplotypes. Ten individuals produced sufficient data from blood and tissue samples to assign haplotypes. Eighty-two sequences were classified as red colobus MHC I alleles distributed across six MHC I loci. Individuals averaged ~13k reads across six MHC I loci, with 83% of all alleles representing either MHC I-A or MHC I-B loci. This study not only represents an important advance in the identification and genotyping of MHC in the endangered red colobus but also shows the potential for using this approach in other endangered wild primates.

18.
Genome Res ; 25(12): 1921-33, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26377836

RESUMEN

We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations.


Asunto(s)
Chlorocebus aethiops/genética , Genoma , Genómica , Animales , Chlorocebus aethiops/clasificación , Pintura Cromosómica , Biología Computacional/métodos , Evolución Molecular , Reordenamiento Génico , Variación Genética , Genómica/métodos , Cariotipo , Complejo Mayor de Histocompatibilidad/genética , Anotación de Secuencia Molecular , Filogenia , Filogeografía
19.
Hum Immunol ; 76(12): 891-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26028281

RESUMEN

Single-molecule real-time (SMRT) sequencing technology with the Pacific Biosciences (PacBio) RS II platform offers the potential to obtain full-length coding regions (∼1100-bp) from MHC class I cDNAs. Despite the relatively high error rate associated with SMRT technology, high quality sequences can be obtained by circular consensus sequencing (CCS) due to the random nature of the error profile. In the present study we first validated the ability of SMRT-CCS to accurately identify class I transcripts in Mauritian-origin cynomolgus macaques (Macaca fascicularis) that have been characterized previously by cloning and Sanger-based sequencing as well as pyrosequencing approaches. We then applied this SMRT-CCS method to characterize 60 novel full-length class I transcript sequences expressed by a cohort of cynomolgus macaques from China. The SMRT-CCS method described here provides a straightforward protocol for characterization of unfragmented single-molecule cDNA transcripts that will potentially revolutionize MHC class I allele discovery in nonhuman primates and other species.


Asunto(s)
Alelos , Genes MHC Clase I , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Variación Genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Prueba de Histocompatibilidad , Macaca fascicularis , Análisis de Secuencia de ADN
20.
Immunogenetics ; 67(8): 437-45, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26009014

RESUMEN

Sooty mangabeys (Cercocebus atys) are natural SIV hosts and the presumed source of HIV-2 and SIVmac, which makes them a valuable model for HIV/SIV research. However, like other African primates, little is known about their major histocompatibility complex (MHC) genetics. In this study, we used Roche/454 and Illumina MiSeq deep sequencing in order to determine the MHC class I transcripts in a cohort of 165 sooty mangabeys from the Yerkes National Primate Research Center (YNPRC). We have characterized 121 functionally full-length classical (Ceat-A and Ceat-B) and non-classical (Ceat-F and Ceat-I) alleles and have also identified 22 Ceat-A/Ceat-B haplotype chromosomal combinations. We correlated these Ceat-A/Ceat-B haplotype combinations to recently described microsatellite haplotypes from the YNPRC colony. These newly identified alleles and haplotypes establish a resource for studying cellular immunity in sooty mangabeys and provide a framework for rapidly cataloging MHC class I sequences in an understudied, yet important, nonhuman primate species.


Asunto(s)
Cercocebus atys/genética , Haplotipos/genética , Antígenos de Histocompatibilidad Clase I/genética , Alelos , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...