Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39287999

RESUMEN

OBJECTIVES: Taniborbactam is a boronate-based ß-lactamase inhibitor in clinical development in combination with cefepime. METHODS: Cefepime-taniborbactam and comparator broth microdilution MICs were determined for patient isolates of Enterobacterales (n = 20 725) and Pseudomonas aeruginosa (n = 7919) collected in 59 countries from 2018 to 2022. Taniborbactam was tested at a fixed concentration of 4 mg/L. Isolates with cefepime-taniborbactam MICs ≥ 16 mg/L underwent WGS. ß-Lactamase genes were identified in additional meropenem-resistant isolates by PCR/Sanger sequencing. RESULTS: Taniborbactam reduced the cefepime MIC90 value for all Enterobacterales from >16 to 0.25 mg/L (>64-fold). At ≤16 mg/L, cefepime-taniborbactam inhibited 99.5% of all Enterobacterales isolates; >95% of isolates with MDR and ceftolozane-tazobactam-resistant phenotypes;  ≥ 89% of isolates with meropenem-resistant and difficult-to-treat-resistant (DTR) phenotypes; >80% of isolates with meropenem-vaborbactam-resistant and ceftazidime-avibactam-resistant phenotypes; 100% of KPC-positive, 99% of OXA-48-like-positive, 99% of ESBL-positive, 97% of acquired AmpC-positive, 95% of VIM-positive and 76% of NDM-positive isolates. Against P. aeruginosa, taniborbactam reduced the cefepime MIC90 value from 32 to 8 mg/L (4-fold). At ≤16 mg/L, cefepime-taniborbactam inhibited 96.5% of all P. aeruginosa isolates; 85% of meropenem-resistant phenotype isolates; 80% of isolates with MDR and meropenem-vaborbactam-resistant phenotypes; >70% of isolates with DTR, ceftazidime-avibactam-resistant and ceftolozane-tazobactam-resistant phenotypes; and 82% of VIM-positive isolates. Multiple potential mechanisms of resistance, including carriage of IMP, or alterations in PBP3 (ftsI), porins (decreased permeability) and efflux (up-regulation) were present in most isolates with cefepime-taniborbactam MICs ≥ 16 mg/L. CONCLUSIONS: Cefepime-taniborbactam exhibited potent in vitro activity against Enterobacterales and P. aeruginosa, and inhibited most carbapenem-resistant isolates, including those carrying serine carbapenemases or NDM/VIM MBLs.

2.
Expert Rev Anti Infect Ther ; : 1-8, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324660

RESUMEN

BACKGROUND: We report results from the national CLEAR (Canadian Leadership on Antimicrobial Real-Life Usage) registry on the usage of ceftolozane/tazobactam in Canada from 2022 to 2024. RESEARCH DESIGN AND METHODS: The authors reviewed the final data using the national ethics approved CLEAR study. Thereafter, the literature is surveyed regarding the usage of ceftolozane/tazobactam to treat patients with HABP and VABP via PubMed (up to May 2024). RESULTS: Ceftolozane/tazobactam was primarily used as directed therapy to treat HABP and VABP caused by Pseudomonas aeruginosa. It was primarily used alone, or in combination with another agent, to treat resistant and multidrug-resistant (MDR) P. aeruginosa infections. Despite primarily being used to treat severely ill patients in intensive care units, its use was associated with relatively high microbiological/clinical cure rates, along with an excellent safety profile. Several reports attest to the microbiological/clinical efficacy and safety of using ceftolozane/tazobactam to treat HABP and VABP. CONCLUSIONS: In Canada, ceftolozane/tazobactam is primarily used as directed therapy alone, or in combination, to treat MDR P. aeruginosa infections. Though mostly used to treat severely ill patients in the ICU, ceftolozane/tazobactam use in HABP and VABP is associated with relatively high microbiological/clinical cure rates and an excellent safety profile.

3.
Drugs ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214942

RESUMEN

Taniborbactam (formerly known as VNRX-5133) is a novel bicyclic boronate ß-lactamase inhibitor of serine ß-lactamases (SBLs) [Ambler classes A, C, and D] and metallo-ß-lactamases (MBLs) [Ambler class B], including NDM and VIM, but not IMP. Cefepime-taniborbactam is active in vitro against most isolates of carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA), including both carbapenemase-producing and carbapenemase-non-producing CRE and CRPA, as well as against multidrug-resistant (MDR), ceftazidime-avibactam-resistant, meropenem-vaborbactam-resistant, and ceftolozane-tazobactam-resistant Enterobacterales and P. aeruginosa. The addition of taniborbactam to cefepime resulted in a > 64-fold reduction in MIC90 compared with cefepime alone for a 2018-2021 global collection of > 13,000 clinical isolates of Enterobacterales. In the same study, against > 4600 P. aeruginosa, a fourfold MIC reduction was observed with cefepime-taniborbactam, compared with cefepime alone. Whole genome sequencing studies have shown that resistance towards cefepime-taniborbactam in Enterobacterales arises due to the presence of multiple resistance mechanisms, often in concert, including production of IMP, PBP3 alterations, permeability (porin) defects, and upregulation of efflux pumps. In P. aeruginosa, elevated cefepime-taniborbactam MICs are also associated with the presence of multiple, concurrent mechanisms, most frequently IMP, PBP3 mutations, and upregulation of efflux pumps, as well as AmpC (PDC) overexpression. The pharmacokinetics of taniborbactam are dose proportional, follow a linear model, and do not appear to be affected when combined with cefepime. Taniborbactam's approximate volume of distribution (Vd) at steady state is 20 L and the approximate elimination half-life (t½) is 2.3 h, which are similar to cefepime. Furthermore, like cefepime, taniborbactam is primarily cleared renally, and clearance corresponds with renal function. Pharmacodynamic studies (in vitro and in vivo) have reported that cefepime-taniborbactam has bactericidal activity against various ß-lactamase-producing Gram-negative bacilli that are not susceptible to cefepime alone. It has been reported that antimicrobial activity best correlated with taniborbactam exposure (area under the curve). A phase III clinical trial showed that cefepime-taniborbactam (2 g/0.5 g administered as an intravenous infusion over 2 h) was superior to meropenem for the treatment of complicated urinary tract infection (cUTI), including acute pyelonephritis, caused by Enterobacterales species and P. aeruginosa while demonstrating similar safety compared with meropenem. The safety and tolerability of taniborbactam and cefepime-taniborbactam has been reported in one pharmacokinetic trial, and in two pharmacokinetic trials and one phase III clinical trial, respectively. Cefepime-taniborbactam appears to be well tolerated in both healthy subjects and patients. Headache and gastrointestinal upset are the most common drug-related adverse effects associated with cefepime-taniborbactam use. Cefepime-taniborbactam will likely have a role in the treatment of infections proven or suspected to be caused by MDR Gram-negative bacteria, including Enterobacterales and P. aeruginosa. In particular, it may be useful in the treatment of infections caused by isolates that harbor an MBL (NDM, VIM) enzyme, although further clinical data are needed. Additional safety and efficacy studies may support indications for cefepime-taniborbactam beyond cUTI.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39092981

RESUMEN

BACKGROUND: Lower respiratory infections and invasive disease caused by Streptococcus pneumoniae serotype 3 remain major clinical challenges around the world, despite widespread availability of updated vaccines. METHODS: As part of CANWARD, antimicrobial susceptibility testing and serotyping were performed on all S. pneumoniae isolates from 2007 to 2021. A subset of 226/264 (85.6%) serotype 3 isolates were selected for WGS to determine sequence type (ST)/clonal cluster (CC) and correspondence of antimicrobial resistance determinants (erm, mefAE, tetM, cat, folA, folP) with resistance phenotype. RESULTS: Of the 3,039 S. pneumoniae isolates obtained from 2007 to 2021, 8.7% (n = 264) were serotype 3, with 64.0% of respiratory origin and 36.0% from blood. Of 226 sequenced serotype 3 isolates, 184 (81.4%) were ST180 (GPSC12). The proportion of ST8561 (single locus variant of ST180) increased from 7.2% to 16.6% during the study period. An increasing proportion of serotype 3 isolates had phenotypic resistance (P = 0.0007) and genetic resistance determinants (P = 0.004), comparing 2017-21 to 2007-11, largely due to a recently expanded ST180 clade with cat, tetM and mef determinants. CONCLUSIONS: S. pneumoniae serotype 3 from GPSC12 continues to dominate throughout Canada, with an increase in the proportion of ST8561. The proportion of serotype 3 isolates that are phenotypically resistant and with genetic resistance determinants is increasing over time, reflecting a global increase in GPSC12 genotypes with known resistance determinants. Phylogenomic characterization of isolates collected over time and from around the world may facilitate improved treatment and enhanced prevention strategies, including new vaccines with activity against S. pneumoniae serotype 3.

5.
Expert Rev Anti Infect Ther ; : 1-8, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008122

RESUMEN

BACKGROUND: We report the final results of the clinical usage of ceftobiprole in patients in Canada from data in the national CLEAR (Canadian Le adership on Antimicrobial Real-Life Usage) registry. RESEARCH DESIGN AND METHODS: The authors review the final data using the national ethics approved CLEAR study. Thereafter, the literature is surveyed regarding the usage of ceftobiprole to treat patients with infectious diseases via PubMed (up to March 2024). RESULTS: In Canada, ceftobiprole is primarily used as directed therapy to treat a variety of severe infections caused by MRSA. It is primarily used in patients failing previous antimicrobials, is frequently added to daptomycin and/or vancomycin with high microbiological and clinical cure rates, along with an excellent safety profile. Several reports attest to the microbiological/clinical efficacy and safety of ceftobiprole. Ceftobiprole is also reported to be used empirically in select patients with community-acquired bacterial pneumonia (CABP), as well as hospital-acquired bacterial pneumonia (HABP). CONCLUSIONS: In Canada, ceftobiprole is used mostly as directed therapy to treat a variety of severe infections caused by MRSA, in patients failing previous antimicrobials. It is frequently added to, and thus used in combination with daptomycin and/or vancomycin with high microbiological/clinical cure rates, and an excellent safety profile.

6.
JAC Antimicrob Resist ; 6(3): dlae077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38799180

RESUMEN

Objectives: To investigate the activities of ceftolozane/tazobactam and imipenem/relebactam against Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa isolated from hospitalized patients in Mexico in 2017-2021. Methods: MICs were determined by CLSI broth microdilution and interpreted using CLSI M100 breakpoints. ß-Lactamase genes were identified in ceftolozane/tazobactam-, imipenem/relebactam-, and/or imipenem-non-susceptible isolates. Results: Ceftolozane/tazobactam and imipenem/relebactam inhibited 89% and 99% of E. coli isolates (n = 2337), and 87% and 94% of K. pneumoniae isolates (n = 1127). Sixty-four percent of E. coli and 47% of K. pneumoniae had an ESBL non-carbapenem-resistant Enterobacterales (ESBL non-CRE) phenotype. Eighty-six percent and 91% of ESBL non-CRE E. coli and K. pneumoniae were ceftolozane/tazobactam susceptible, and 99.9% and 99.8% were imipenem/relebactam susceptible. Ceftolozane/tazobactam was the most active agent studied against P. aeruginosa (n = 1068; 83% susceptible), 9-28 percentage points higher than carbapenems and comparator ß-lactams excluding imipenem/relebactam (78% susceptible). Ceftolozane/tazobactam remained active against 35%-58%, and imipenem/relebactam against 32%-42%, of P. aeruginosa in meropenem-, piperacillin/tazobactam-, and cefepime-non-susceptible subsets. The majority of isolates of ceftolozane/tazobactam-non-susceptible E. coli carried an ESBL, whereas among ceftolozane/tazobactam-non-susceptible K. pneumoniae and P. aeruginosa, the majority carried carbapenemases. The most prevalent carbapenemase observed among E. coli (estimated at 0.7% of all isolates), K. pneumoniae (4.8%) and P. aeruginosa (10.0%) was an MBL. Almost all imipenem/relebactam-non-susceptible E. coli and K. pneumoniae carried MBL or OXA-48-like carbapenemases, whereas among imipenem/relebactam-non-susceptible P. aeruginosa, 56% carried MBL or GES carbapenemases. Conclusions: Ceftolozane/tazobactam and imipenem/relebactam may provide treatment options for patients infected with ß-lactam-non-susceptible Gram-negative bacilli, excluding isolates carrying an MBL- or OXA-48-like carbapenemase.

7.
Eur J Clin Microbiol Infect Dis ; 43(7): 1343-1348, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38775873

RESUMEN

PURPOSE: The current study evaluated the in vitro activities of ceftolozane/tazobactam (C/T), imipenem/relebactam (IMI/REL), and comparators against recent (2017-2021) clinical isolates of gram-negative bacilli from two countries in southern Europe. METHODS: Nine clinical laboratories (two in Greece; seven in Italy) each collected up to 250 consecutive gram-negative isolates per year from lower respiratory tract, intraabdominal, urinary tract, and bloodstream infection samples. MICs were determined by the CLSI broth microdilution method and interpreted using 2022 EUCAST breakpoints. ß-lactamase genes were identified in select ß-lactam-nonsusceptible isolate subsets. RESULTS: C/T inhibited the growth of 85-87% of Enterobacterales and 94-96% of ESBL-positive non-CRE NME (non-Morganellaceae Enterobacterales) isolates from both countries. IMI/REL inhibited 95-98% of NME, 100% of ESBL-positive non-CRE NME, and 98-99% of KPC-positive NME isolates from both countries. Country-specific differences in percent susceptible values for C/T, IMI/REL, meropenem, piperacillin/tazobactam, levofloxacin, and amikacin were more pronounced for Pseudomonas aeruginosa than Enterobacterales. C/T and IMI/REL both inhibited 84% of P. aeruginosa isolates from Greece and 91-92% of isolates from Italy. MBL rates were estimated as 4% of Enterobacterales and 10% of P. aeruginosa isolates from Greece compared to 1% of Enterobacterales and 3% of P. aeruginosa isolates from Italy. KPC rates among Enterobacterales isolates were similar in both countries (7-8%). OXA-48-like enzymes were only identified in Enterobacterales isolates from Italy (1%) while GES carbapenemase genes were only identified in P. aeruginosa isolates from Italy (2%). CONCLUSION: We conclude that C/T and IMI/REL may provide viable treatment options for many patients from Greece and Italy.


Asunto(s)
Antibacterianos , Cefalosporinas , Enterobacteriaceae , Imipenem , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Tazobactam , Humanos , Italia , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Tazobactam/farmacología , Grecia , Imipenem/farmacología , Cefalosporinas/farmacología , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/aislamiento & purificación , Enterobacteriaceae/genética , Compuestos de Azabiciclo/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Pseudomonas/microbiología
8.
J Glob Antimicrob Resist ; 37: 168-175, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608936

RESUMEN

OBJECTIVES: To report trends in carbapenem resistance and difficult-to-treat resistance (DTR) among clinical isolates of Gram-negative priority pathogens collected by the ATLAS global surveillance program from 2018 to 2022. METHODS: Reference broth microdilution testing was performed in a central laboratory for 79,214 Enterobacterales, 30,504 Pseudomonas aeruginosa, and 13,500 Acinetobacter baumannii-calcoaceticus complex isolates collected by a constant set of 157 medical centres in 49 countries in Asia Pacific (APAC), Europe (EUR), Latin America (LATAM), Middle East-Africa (MEA), and North America (NA) regions. MICs were interpreted by 2023 CLSI M100 breakpoints. ß-lactamase genes were identified for meropenem-nonsusceptible (MIC ≥2 mg/L) Enterobacterales isolates. RESULTS: Carbapenem-resistant Enterobacterales (CRE) detection increased (P < 0.05) in APAC, EUR, LATAM, and MEA regions and decreased in NA, while annual DTR percentages increased in all five regions. Carbapenem-resistant P. aeruginosa (CRPA; decreased in MEA region) and carbapenem-resistant A. baumannii-calcoaceticus complex (CRAB; decreased in MEA region and increased in EUR) remained relatively stable over time in all regions, although notably, annual percentages of CRAB and DTR A. baumannii-calcoaceticus complex isolates were consistently >25 percentage points lower in NA than in other regions. For all regions except NA, the majority of changes in CRE percentages could be attributed to hospital-acquired infections. Among meropenem-nonsusceptible Enterobacterales, KPC was the most frequent carbapenemase in NA and EUR each year. NDM was the most prevalent carbapenemase detected in 2022 in other global regions. CONCLUSION: CRE, CRPA, CRAB, and DTR rates vary among global regions over time highlighting the need for continuing surveillance to inform treatment strategies and antimicrobial stewardship.


Asunto(s)
Antibacterianos , Carbapenémicos , Pruebas de Sensibilidad Microbiana , Humanos , Carbapenémicos/farmacología , Antibacterianos/farmacología , Organización Mundial de la Salud , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , beta-Lactamasas/genética , Salud Global , Monitoreo Epidemiológico , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/epidemiología , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/clasificación , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación
9.
JAC Antimicrob Resist ; 6(1): dlad152, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38222461

RESUMEN

Background: Ongoing national and international surveillance efforts are critical components of antimicrobial stewardship, resistance monitoring, and drug development programs. In this report, we summarize the results of ceftolozane/tazobactam, imipenem/relebactam, ceftazidime/avibactam and comparator agent testing against 10 509 Enterobacterales and 2524 Pseudomonas aeruginosa collected by USA clinical laboratories in 2019-21 as part of the SMART global surveillance programme. Methods: MICs were determined by CLSI broth microdilution and interpreted using 2023 CLSI M100 breakpoints. Results: Most Enterobacterales were ceftazidime/avibactam susceptible (>99%), meropenem susceptible (99%) and ceftolozane/tazobactam susceptible (94%). Non-Morganellaceae Enterobacterales were also highly susceptible to imipenem/relebactam (99%). Ceftolozane/tazobactam inhibited 94% of Escherichia coli and 89% of Klebsiella pneumoniae with ceftriaxone non-susceptible/non-carbapenem-resistant phenotypes. Against P. aeruginosa, ceftolozane/tazobactam (97% susceptible) was more active than ceftazidime/avibactam (95%) and imipenem/relebactam (91%). MDR and difficult-to-treat resistance (DTR) phenotypes were identified in 13% and 7% of P. aeruginosa isolates, respectively. Ceftolozane/tazobactam remained active against 78% of MDR P. aeruginosa (13% and 23% higher than ceftazidime/avibactam and imipenem/relebactam, respectively) and against 74% of DTR P. aeruginosa (24% and 37% higher than ceftazidime/avibactam and imipenem/relebactam, respectively). Length of hospital stay at the time of specimen collection, ward type and infection type resulted in percent susceptible value differences of >5% across isolate demographic strata for some antimicrobial agent/pathogen combinations. Conclusions: We conclude that in the USA, in 2019-21, carbapenem (meropenem) resistance remained uncommon in Enterobacterales and ceftolozane/tazobactam was more active than both ceftazidime/avibactam and imipenem/relebactam against P. aeruginosa.

10.
JAC Antimicrob Resist ; 6(1): dlad149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161963

RESUMEN

Objectives: To evaluate the in vitro susceptibility of recent Gram-negative pathogens collected in South Korean medical centres to imipenem/relebactam and comparator agents. Methods: From 2018 to 2021, six hospitals in South Korea each collected up to 250 consecutive, aerobic or facultative Gram-negative pathogens per year from patients with bloodstream, intra-abdominal, lower respiratory tract and urinary tract infections. MICs were determined using CLSI broth microdilution and interpreted by 2023 CLSI breakpoints. Most isolates that were imipenem/relebactam, imipenem or ceftolozane/tazobactam non-susceptible were screened for ß-lactamase genes by PCR or WGS. Results: Of all non-Morganellaceae Enterobacterales (NME) isolates (n = 4100), 98.8% were imipenem/relebactam susceptible. Most NME were also susceptible to imipenem alone (94.7%) and meropenem (97.3%); percent susceptible values for non-carbapenem ß-lactam comparators were lower (68%-80%). Imipenem/relebactam retained activity against 96.4%, 70.8% and 70.6% of MDR, difficult-to-treat resistant (DTR) and meropenem-non-susceptible NME, respectively, and inhibited 93.1% of KPC-carrying and 95.5% of ESBL-carrying NME. Of imipenem/relebactam-resistant NME, 21/25 (84.0%) carried an MBL or an OXA-48-like carbapenemase. Of all Pseudomonas aeruginosa isolates (n = 738), 82.8% were imipenem/relebactam susceptible; percent susceptible values for all ß-lactam comparators, including carbapenems (imipenem, meropenem) were 61.5%-74.7%. Less than 20% of MDR and DTR isolates, and 41% of meropenem-non-susceptible P. aeruginosa isolates were imipenem/relebactam susceptible. Of imipenem/relebactam-resistant P. aeruginosa isolates, 61.6% carried an MBL and 37.0% did not possess any acquired ß-lactamase genes. Conclusions: Based on in vitro data, imipenem/relebactam, if licensed in South Korea, may be a viable treatment option for many hospitalized patients infected with common Gram-negative pathogens including NME exhibiting MDR, DTR and carbapenem resistance and many ß-lactam-resistant phenotypes of P. aeruginosa.

11.
J Formos Med Assoc ; 123(3): 400-407, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37735013

RESUMEN

BACKGROUND: Imipenem/relebactam (IMR) was approved for patient use in Taiwan in 2023. We evaluated the in vitro susceptibility of recent Gram-negative pathogens collected in Taiwan hospitals to IMR and comparators with a focus on carbapenem-resistant and KPC-carrying non-Morganellaceae Enterobacterales (NME), and carbapenem-resistant Pseudomonas aeruginosa (CRPA). METHODS: From 2018 to 2021, eight hospitals in Taiwan each collected up to 250 consecutive, aerobic or facultative, Gram-negative pathogens per year from patients with bloodstream, intraabdominal, lower respiratory tract, and urinary tract infections. MICs were determined using Clinical Laboratory Standards Institute (CLSI) broth microdilution. Most isolates that were IMR-, imipenem-, or ceftolozane/tazobactam-nonsusceptible were screened for ß-lactamase genes by PCR or whole-genome sequencing. RESULTS: Ninety-eight percent of NME (n = 5063) and 94% of P. aeruginosa (n = 1518) isolates were IMR-susceptible. Percent susceptible values for non-carbapenem ß-lactam comparators, including piperacillin/tazobactam, were 68-79% for NME isolates, while percent susceptible values for all ß-lactam comparators, including meropenem, were 73-81% for P. aeruginosa. IMR retained activity against 93% of multidrug-resistant (MDR) NME and 70% of MDR P. aeruginosa. Sixty-five percent of carbapenem-resistant NME and 81% of KPC-positive NME (n = 80) were IMR-susceptible. IMR inhibited 70% of CRPA (n = 287). Fifty percent of IMR-nonsusceptible NME tested for ß-lactamase carriage had an MBL or OXA-48-like enzyme, whereas most (95%) IMR-nonsusceptible P. aeruginosa examined did not carry acquired ß-lactamase genes. CONCLUSION: Based on our in vitro data, IMR may be a useful option for the treatment of hospitalized patients in Taiwan with infections caused by common Gram-negative pathogens, including carbapenem-resistant NME, KPC-positive NME, and CRPA.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Imipenem , Humanos , Taiwán , Antibacterianos/farmacología , Imipenem/farmacología , Carbapenémicos/farmacología , Tazobactam , Pseudomonas aeruginosa/genética , beta-Lactamas , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana
12.
J Glob Antimicrob Resist ; 35: 93-100, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37709139

RESUMEN

OBJECTIVES: To report the in vitro susceptibility of Enterobacterales (n = 3905) and Pseudomonas aeruginosa (n = 1,109) isolates, collected from patients in sub-Saharan Africa (four countries) in 2017-2021, to a panel of 10 antimicrobial agents with a focus on ceftazidime-avibactam activity against resistant phenotypes and ß-lactamase carriers. METHODS: MICs were determined by CLSI broth microdilution and interpreted using both 2022 CLSI and EUCAST breakpoints. ß-lactamase genes were identified in select ß-lactam-nonsusceptible isolate subsets using multiplex PCR assays. RESULTS: Among Enterobacterales, 96.2% of all isolates were ceftazidime-avibactam-susceptible (MIC90, 0.5 µg/mL), including all serine carbapenemase-positive (n = 127), 99.6% of ESBL-positive, carbapenemase-negative (n = 730), 91.9% of multidrug resistant (MDR; n = 1817), and 42.7% of DTR (difficult-to-treat resistance; n = 171) isolates. Metallo-ß-lactamase (MBL) genes were identified in most (n = 136; 91.2%) ceftazidime-avibactam-resistant isolates (3.5% of all Enterobacterales isolates). Ceftazidime-avibactam percent susceptible values ranged from 99.5% (Klebsiella species other than Klebsiella pneumoniae) to 92.5% (K. pneumoniae) for the various Enterobacterial taxa examined. Greater than 90% of Enterobacterales isolates from each country (Cameroon, Ivory Coast, Nigeria, South Africa) were ceftazidime-avibactam-susceptible. Among P. aeruginosa, 88.9% of all isolates were ceftazidime-avibactam-susceptible (MIC90, 16 µg/mL). Most (88.5%) MBL-negative, meropenem-resistant (n = 78), 68.1% of MDR (n = 385), and 19.2% of DTR isolates (n = 99) were ceftazidime-avibactam-susceptible. MBL genes were identified in 43.1% of ceftazidime-avibactam-resistant isolates (n = 53; 4.8% of all P. aeruginosa isolates). Country-specific ceftazidime-avibactam percent susceptible values for P. aeruginosa ranged from 94.1% (Cameroon) to 76.2% (Nigeria). CONCLUSION: Reference in vitro antimicrobial susceptibility testing demonstrated that most recent Enterobacterales (96%) and P. aeruginosa (89%) clinical isolates from four sub-Saharan African countries were ceftazidime-avibactam susceptible.


Asunto(s)
Antibacterianos , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ceftazidima/farmacología , Ceftazidima/uso terapéutico , beta-Lactamasas/genética , Klebsiella , Sudáfrica
13.
JAC Antimicrob Resist ; 5(4): dlad098, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37577157

RESUMEN

Objectives: To evaluate the in vitro activities of ceftolozane/tazobactam and imipenem/relebactam against clinical isolates of Gram-negative bacilli collected in four central and northern European countries (Belgium, Norway, Sweden, Switzerland) during 2017-21. Methods: Participating clinical laboratories each collected up to 250 consecutive Gram-negative isolates per year from patients with bloodstream, intraabdominal, lower respiratory tract or urinary tract infections. MICs were determined by CLSI broth microdilution and interpreted using 2022 EUCAST breakpoints. ß-Lactamase genes were identified in select ß-lactam-non-susceptible isolate subsets. Results: Ninety-five percent of all Enterobacterales (n = 4158), 95% of ESBL-positive non-carbapenem-resistant Enterobacterales (non-CRE) phenotype Escherichia coli and 85% of ESBL-positive non-CRE phenotype Klebsiella pneumoniae were ceftolozane/tazobactam susceptible. By country, 88% (Belgium), 91% (Sweden, Switzerland) and 96% (Norway) of ESBL-positive non-CRE phenotype Enterobacterales were ceftolozane/tazobactam susceptible. Greater than ninety-nine percent of non-Morganellaceae Enterobacterales and all ESBL-positive non-CRE phenotype Enterobacterales were imipenem/relebactam susceptible. Ceftolozane/tazobactam (96%) and imipenem/relebactam (95%) inhibited most Pseudomonas aeruginosa (n = 823). Both agents retained activity against ≥75% of cefepime-resistant, ceftazidime-resistant and piperacillin/tazobactam-resistant isolates; 56% and 43% of meropenem-resistant isolates were ceftolozane/tazobactam susceptible and imipenem/relebactam susceptible, respectively. By country, 94% (Belgium), 95% (Sweden) and 100% (Norway, Switzerland) of P. aeruginosa were ceftolozane/tazobactam susceptible and 93% (Sweden) to 98% (Norway, Switzerland) were imipenem/relebactam susceptible. Carbapenemase gene carriage among Enterobacterales and P. aeruginosa isolates was generally low (<1%) or completely absent with one exception: an estimated 2.7% of P. aeruginosa isolates from Belgium carried an MBL. Conclusions: Recent clinical isolates of Enterobacterales and P. aeruginosa collected in four central and northern European countries were highly susceptible (≥95%) to ceftolozane/tazobactam and imipenem/relebactam.

14.
Expert Rev Neurother ; 23(10): 921-930, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37615494

RESUMEN

INTRODUCTION: The associations between multiple sclerosis (MS) and altered intestinal microbiomes have clinicians considering the use of fecal microbiota transplantation (FMT). Animal data suggests that administering FMT from people with MS into healthy mice results in a microbiome with decreased abundance of Sutterella, reduced anti-inflammatory signals, increase in inflammation and experimental autoimmune encephalomyelitis (EAE). Animal studies that administered FMT (from normal healthy donors) into mice resulted in slowing down EAE development relieving symptoms, improving BBB integrity and restoration of microbiota diversity. Human studies indicated clinical benefits of FMT (from healthy donors) in people with MS including: improved intestinal motility and motor ability which lasted at least for the duration of the studies, ranging from 2 to 15 years. AREAS COVERED: The authors discuss the efficacy and safety of FMT in treatment of experimental MS in animals and humans with MS. A literature search was performed via PubMed (up to July 2023), using the key words: multiple sclerosis, fecal microbiota transplantation, microbiome. EXPERT OPINION: Limited associative data do not provide an understanding of role of FMT in the treatment for MS. Until appropriately designed randomized comparative trials which are underway, are completed, we cannot recommend routine use of FMT in people with MS.


Asunto(s)
Microbioma Gastrointestinal , Esclerosis Múltiple , Humanos , Animales , Ratones , Trasplante de Microbiota Fecal/métodos , Esclerosis Múltiple/terapia , Inflamación , Resultado del Tratamiento
15.
Eur J Clin Microbiol Infect Dis ; 42(9): 1135-1143, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37526796

RESUMEN

This study aimed to report reference method antimicrobial susceptibility results for 24,937 recent (2019-2021) clinical isolates of Enterobacterales from 27 countries in Latin America, Eurasia, Africa/Middle East, and Asia with a focus on the investigational combination aztreonam-avibactam against metallo-ß-lactamase (MBL) isolates. Antimicrobial susceptibility testing was performed by the CLSI broth microdilution methodology. Minimum inhibitory concentrations (MICs) were interpreted using the CLSI (2022) breakpoints for all agents except aztreonam-avibactam (provisional pharmacokinetic/pharmacodynamic susceptible breakpoint, ≤ 8 mg/L) and tigecycline (US-FDA). Molecular testing for ß-lactamase genes was performed on isolates with meropenem MICs ≥ 2 mg/L, ceftazidime-avibactam MICs ≥ 16 mg/L, and/or aztreonam-avibactam MICs ≥ 16 mg/L, and 50% of isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Klebsiella variicola, and Proteus mirabilis testing with ceftazidime and/or aztreonam MICs ≥ 2 mg/L. Aztreonam-avibactam inhibited 99.8% of all Enterobacterales at ≤ 8 mg/L (MIC90, 0.25 mg/L) and maintained activity against phenotypically resistant subsets of multidrug-resistant (MDR) (99.5% susceptible), extensively drug-resistant (XDR) (98.7%), and carbapenem-resistant Enterobacterales (CRE) (99.1%) isolates. At ≤ 8 mg/L, aztreonam-avibactam inhibited 100%, 99.6%, 99.6%, and 98.8% of KPC-, OXA-48-like-, ESBL-, and MBL-carrying isolates, respectively. MBL-positive isolates were most prevalent in India (20.5%), Guatemala (13.8%), and Jordan (13.2%). No differences in the activity of aztreonam-avibactam were observed across the global regions evaluated. At a concentration of ≤ 8 mg/L, aztreonam-avibactam inhibited almost all Enterobacterales collected from developing countries, including MBL-producing isolates. The widespread dissemination of MBLs among Enterobacterales highlights the unmet need for new agents such as aztreonam-avibactam for the treatment of CRE infections.


Asunto(s)
Antibacterianos , Aztreonam , Humanos , Aztreonam/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , América Latina/epidemiología , Enterobacteriaceae , Ceftazidima/farmacología , beta-Lactamasas/genética , Asia/epidemiología , Medio Oriente , Carbapenémicos , Combinación de Medicamentos , Pruebas de Sensibilidad Microbiana
16.
J Glob Antimicrob Resist ; 34: 106-112, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37419182

RESUMEN

OBJECTIVES: To determine the in vitro activities of ceftolozane/tazobactam (C/T) and comparators against Pseudomonas aeruginosa isolates cultured from hospitalised patient samples in Taiwan from 2012 to 2021 with an additional focus on the temporal and geographical prevalence of carbapenem-resistant P. aeruginosa (CRPA). METHODS: P. aeruginosa isolates (n = 3013) were collected annually by clinical laboratories in northern (two medical centres), central (three medical centres), and southern Taiwan (four medical centres) as part of the SMART global surveillance program. MICs were determined by CLSI broth microdilution and interpreted using 2022 CLSI breakpoints. Molecular ß-lactamase gene identification was performed on selected non-susceptible isolate subsets in 2015 and later. RESULTS: Overall, 520 (17.3%) CRPA isolates were identified. The prevalence of CRPA increased from 11.5%-12.3% (2012-2015) to 19.4%-22.8% (2018-2021) (P ≤ 0.0001). Medical centres in northern Taiwan reported the highest percentages of CRPA. C/T, first tested in the SMART program in 2016, was highly active against all P. aeruginosa (97% susceptible), with annual susceptibility rates ranging from 94% (2017) to 99% (2020). Against CRPA, C/T inhibited >90% of isolates each year, with the exception of 2017 (79.4% susceptible). Most CRPA isolates (83%) were molecularly characterised, and only 2.1% (9/433) carried a carbapenemase (most commonly, VIM); all nine carbapenemase-positive isolates were from northern and central Taiwan. CONCLUSION: The prevalence of CRPA increased significantly in Taiwan from 2012 to 2021 and warrants continued monitoring. In 2021, 97% of all P. aeruginosa and 92% of CRPA in Taiwan were C/T susceptible. Routine in vitro susceptibility testing of clinical isolates of P. aeruginosa against C/T, and other newer ß-lactam/ß-lactamase inhibitor combinations, appears prudent.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Prevalencia , Taiwán/epidemiología , Enterobacteriaceae , Infecciones por Pseudomonas/epidemiología , Infecciones por Pseudomonas/tratamiento farmacológico , Tazobactam/farmacología , Inhibidores de beta-Lactamasas , Carbapenémicos/farmacología
17.
JAC Antimicrob Resist ; 5(3): dlad080, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37388237

RESUMEN

Objectives: To determine susceptibility profiles and ß-lactamase content for ceftolozane/tazobactam-resistant and imipenem/relebactam-resistant Pseudomonas aeruginosa isolates collected in eight global regions during 2016-21. Methods: Broth microdilution MICs were interpreted using CLSI breakpoints. PCR to identify ß-lactamase genes or WGS was performed on selected isolate subsets. Results: Ceftolozane/tazobactam-resistant [from 0.6% (Australia/New Zealand) to 16.7% (Eastern Europe)] and imipenem/relebactam-resistant [from 1.3% (Australia/New Zealand) to 13.6% (Latin America)] P. aeruginosa varied by geographical region. Globally, 5.9% of isolates were both ceftolozane/tazobactam resistant and imipenem/relebactam resistant; 76% of these isolates carried MBLs. Most ceftolozane/tazobactam-resistant/imipenem/relebactam-susceptible isolates carried ESBLs (44%) or did not carry non-intrinsic (acquired) ß-lactamases (49%); 95% of imipenem/relebactam-resistant/ceftolozane/tazobactam-susceptible isolates did not carry non-intrinsic ß-lactamases. Isolates that carried indicators of strong PDC (Pseudomonas-derived cephalosporinase) up-regulation without a mutation known to expand the spectrum of PDC, or non-intrinsic ß-lactamases, showed an 8-fold increase in ceftolozane/tazobactam modal MIC; however, this rarely (3%) resulted in ceftolozane/tazobactam resistance. Isolates with a PDC mutation and an indicator for PDC upregulation were ceftolozane/tazobactam non-susceptible (MIC,  ≥ 8 mg/L). MICs ranged widely (1 to >32 mg/L) for isolates with a PDC mutation and no positively identified indicator for PDC up-regulation. Imipenem/relebactam-resistant/ceftolozane/tazobactam-susceptible isolates without non-intrinsic ß-lactamases frequently (91%) harboured genetic lesions implying OprD loss of function; however, this finding alone did not account for this phenotype. Among imipenem-non-susceptible isolates without non-intrinsic ß-lactamases, implied OprD loss only shifted the distribution of imipenem/relebactam MICs up by 1-2 doubling dilutions, resulting in ∼10% imipenem/relebactam-resistant isolates. Conclusions: P. aeruginosa with ceftolozane/tazobactam-resistant/imipenem/relebactam-susceptible and imipenem/relebactam-resistant/ceftolozane/tazobactam-susceptible phenotypes were uncommon and harboured diverse resistance determinants.

18.
Int J Antimicrob Agents ; 62(3): 106900, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37354921

RESUMEN

OBJECTIVES: To describe the in vitro activity of imipenem/relebactam (IMR) against non-Morganellaceae Enterobacterales (NME) and Pseudomonas aeruginosa, including piperacillin/tazobactam-nonsusceptible and meropenem-nonsusceptible isolates, infecting hospitalized patients in the Asia-Pacific region. METHODS: From 2017 to 2020, 49 clinical laboratories in nine countries in the Asia-Pacific region participated in the SMART global surveillance program and contributed 26 783 NME and 6383 P. aeruginosa. Minimum inhibitory concentrations (MICs) were determined using CLSI broth microdilution and interpreted using CLSI M100 (2021) breakpoints. ß-Lactamase genes were identified in selected isolate subsets (2017-2020) and oprD was sequenced in molecularly characterized P. aeruginosa collected in 2020. RESULTS: Amikacin (97.9% susceptible), IMR (95.8%), meropenem (95.4%), and imipenem (92.6%) were the most active agents against NME. Among piperacillin/tazobactam-nonsusceptible NME (n=4070), 76.1% were IMR-susceptible (range by country, 97.5% [New Zealand] to 50.6% [Vietnam]); 22.4% of meropenem-nonsusceptible NME (n=1225) were IMR-susceptible (range by country, 68.8% [South Korea] to 7.6% [Thailand]). A total of 2.7% of NME carried a metallo-ß-lactamase (MBL), 0.9% an OXA-48-like carbapenemase (MBL-negative), and 0.7% a KPC (MBL-negative). Amikacin (94.0% susceptible) and IMR (90.3%) were the most active agents against P. aeruginosa; 71.2% of isolates were imipenem-susceptible. Relebactam increased susceptibility to imipenem by 25.6% (from 40.5% to 66.1%) in piperacillin/tazobactam-nonsusceptible and by 44.8% (from 7.1% to 51.9%) in meropenem-nonsusceptible P. aeruginosa. Only 4.3% of P. aeruginosa were MBL-positive. A total of 70.3% (90/128) of IMR-nonsusceptible P. aeruginosa were oprD-deficient. CONCLUSION: In 2017-2020, 96% of NME and 90% of P. aeruginosa from the Asia-Pacific region were IMR-susceptible. IMR percent susceptible rates were higher in countries with lower MBL carriage.


Asunto(s)
Amicacina , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Meropenem/farmacología , Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Imipenem/farmacología , beta-Lactamasas/genética , Tazobactam , Piperacilina/farmacología , Tailandia , Pruebas de Sensibilidad Microbiana
19.
Microb Drug Resist ; 29(8): 360-370, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37253158

RESUMEN

We examined the in vitro susceptibility of meropenem-nonsusceptible Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex isolates from five consecutive annual SIDERO-WT surveillance studies (2014-2019) to cefiderocol and comparator agents in the context of their carbapenemase carriage. 1,003 Enterobacterales, 1,758 P. aeruginosa, and 2,809 A. baumannii complex isolates from North America and Europe that were meropenem nonsusceptible (CLSI M100, 2022) were molecularly characterized for ß-lactamase content by PCR followed by Sanger sequencing or by whole genome sequencing. Among Enterobacterales, 91.5% of metallo-ß-lactamase (MBL)-producing, 98.4% of KPC-producing, 97.3% of OXA-48 group-producing, and 98.7% of carbapenemase-negative, meropenem-nonsusceptible isolates were cefiderocol susceptible (MIC ≤4 mg/L). Among P. aeruginosa, 100% of MBL-producing, 100% of GES carbapenemase-producing, and 99.8% of carbapenemase-negative, meropenem-nonsusceptible isolates were cefiderocol susceptible (MIC ≤4 mg/L). Among A. baumannii complex, 60.0% of MBL-producing, 95.6% of OXA-23 group-producing, 89.5% of OXA-24 group-producing, 100% of OXA-58 group-producing, and 95.5% of carbapenemase-negative, meropenem-nonsusceptible isolates were cefiderocol susceptible (MIC ≤4 mg/L). Cefiderocol was inactive against A. baumannii complex isolates carrying a PER or VEB ß-lactamase (n = 103; 15.5% susceptible). Ceftazidime-avibactam and ceftolozane-tazobactam were inactive against MBL-carrying and A. baumannii complex isolates; ceftolozane-tazobactam was also inactive against serine carbapenemase-carrying Enterobacterales and P. aeruginosa. In summary, cefiderocol was highly active in vitro against Gram-negative isolates carrying MBLs and serine carbapenemases, as well as carbapenemase-negative, meropenem-nonsusceptible isolates.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Meropenem/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Tazobactam , beta-Lactamasas/genética , Pseudomonas aeruginosa , Compuestos de Azabiciclo , Cefiderocol
20.
Braz J Infect Dis ; 27(3): 102775, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37169345

RESUMEN

Carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa are being isolated from patient specimens with increasing frequency in Latin America and worldwide. The current study provides an initial description of the in vitro activity of imipenem/relebactam (IMR) against non-Morganellaceae Enterobacterales (NME) and P. aeruginosa infecting hospitalized patients in Latin America. From 2018 to 2020, 37 clinical laboratories in nine Latin American countries participated in the SMART global surveillance program and contributed 15,466 NME and 3408 P aeruginosa isolates. MICs for IMR and seven comparators were determined using CLSI broth microdilution and interpreted by CLSI M100 (2022) breakpoints. ß-lactamase genes were identified in selected isolate subsets. IMR (96.9% susceptible), amikacin (95.9%), meropenem (90.7%), and imipenem (88.7%) were the most active agents against NME. Among piperacillin/tazobactam-nonsusceptible NME (n = 4124), 90.4% of isolates were IMR-susceptible (range by country, 97.2 [Chile] to 67.0% [Guatemala]) and among meropenem-nonsusceptible NME isolates (n = 1433), 74.0% were IMR-susceptible (94.1% [Puerto Rico] to 5.1% [Guatemala]). Overall, 6.3% of all collected NME isolates carried a KPC (metallo-ß-lactamase [MBL]-negative), 1.8% an MBL, 0.4% an OXA-48-like carbapenemase (MBL-negative), and 0.1% a GES carbapenemase (MBL-negative). Amikacin (85.2% susceptible) and IMR (80.1%) were the most active agents against P. aeruginosa; only 56.5% of isolates were imipenem-susceptible. Relebactam increased susceptibility to imipenem by 22.0% (from 23.9% to 45.9%) in piperacillin/tazobactam-nonsusceptible isolates (n = 1031) and by 35.5% (from 5.5% to 41.0%) in meropenem-nonsusceptible isolates (n = 1128). Overall, 7.6% of all collected P. aeruginosa isolates were MBL-positive and 0.7% carried a GES carbapenemase. In conclusion, in 2018‒2020, almost all NME (97%) and most P. aeruginosa (80%) isolates from Latin America were IMR-susceptible. Continued surveillance of the in vitro activities of IMR and comparator agents against Gram-negative pathogens, and monitoring for ß-lactamase changes (in particular for increases in MBLs), is warranted.


Asunto(s)
Amicacina , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , América Latina , Amicacina/farmacología , Meropenem/farmacología , Antibacterianos/farmacología , Imipenem/farmacología , beta-Lactamasas/genética , Piperacilina , Tazobactam , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA