Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 127
1.
Curr Opin Immunol ; 87: 102429, 2024 Apr.
Article En | MEDLINE | ID: mdl-38805851

Recognition of antigens by T cell receptors (TCRs) and B cell receptors (BCRs) is a key step in lymphocyte activation. T and B cells mediate adaptive immune responses, which protect us against infections and provide immunological memory, and also, in some instances, drive pathogenic responses in autoimmune diseases. TCRs and BCRs are encoded within loci that are known to be genetically diverse. However, the extent and functional impact of this variation, both in humans and model animals used in immunological research, remain largely unknown. Experimental and genetic evidence has demonstrated that the complementarity determining regions 1 and 2 (HCDR1 and HCDR2), encoded by the variable (V) region of TCRs and BCRs, also often make critical contacts with the targeted antigen. Thus, knowledge about allelic variation in the genes encoding TCRs and BCRs is critically important for understanding adaptive immune responses in outbred populations and to define responder and non-responder phenotypes.


Genetic Variation , Receptors, Antigen, B-Cell , Humans , Animals , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Adaptive Immunity/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , B-Lymphocytes/immunology , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology
2.
Cell Rep Med ; 5(6): 101577, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38761799

Descendants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant now account for almost all SARS-CoV-2 infections. The Omicron variant and its sublineages have spike glycoproteins that are highly diverged from the pandemic founder and first-generation vaccine strain, resulting in significant evasion from monoclonal antibody therapeutics and vaccines. Understanding how commonly elicited antibodies can broaden to cross-neutralize escape variants is crucial. We isolate IGHV3-53, using "public" monoclonal antibodies (mAbs) from an individual 7 months post infection with the ancestral virus and identify antibodies that exhibit potent and broad cross-neutralization, extending to the BA.1, BA.2, and BA.4/BA.5 sublineages of Omicron. Deep mutational scanning reveals these mAbs' high resistance to viral escape. Structural analysis via cryoelectron microscopy of a representative broadly neutralizing antibody, CAB-A17, in complex with the Omicron BA.1 spike highlights the structural underpinnings of this broad neutralization. By reintroducing somatic hypermutations into a germline-reverted CAB-A17, we delineate the role of affinity maturation in the development of cross-neutralization by a public class of antibodies.


Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , Humans , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Cross Reactions/immunology , Cryoelectron Microscopy , Neutralization Tests
3.
Clin Transl Immunology ; 13(5): e1508, 2024.
Article En | MEDLINE | ID: mdl-38707998

Objectives: The caecum bridges the small and large intestine and plays a front-line role in discriminating gastrointestinal antigens. Although dysregulated in acute and chronic conditions, the tissue is often overlooked immunologically. Methods: To address this issue, we applied single-cell transcriptomic-V(D)J sequencing to FACS-isolated CD45+ caecal patch/lamina propria leukocytes from a healthy (5-year-old) female rhesus macaque ex vivo and coupled these data to VDJ deep sequencing reads from haematopoietic tissues. Results: We found caecal NK cells and ILC3s to co-exist with a spectrum of effector T cells partially derived from SOX4 + recent thymic emigrants. Tolerogenic Vγ8Vδ1-T cells, plastic CD4+ T helper cells and GZMK + EOMES + and TMIGD2 + tissue-resident memory CD8+ T cells were present and differed metabolically. An IL13 + GATA3 + Th2 subset expressing eicosanoid pathway enzymes was accompanied by IL1RL1 + GATA3 + regulatory T cells and a minor proportion of IgE+ plasma cells (PCs), illustrating tightly regulated type 2 immunity devoid of ILC2s. In terms of B lymphocyte lineages, caecal patch antigen-presenting memory B cells sat alongside germinal centre cells undergoing somatic hypermutation and differentiation into IGF1 + PCs. Prototypic gene expression signatures decreased across PC clusters, and notably, expanded IgA clonotypes could be traced in VDJ deep sequencing reads from additional compartments, including the bone marrow, supporting that these cells contribute a steady stream of systemic antibodies. Conclusions: The data advance our understanding of caecal immunological function, revealing processes involved in barrier maintenance and molecular networks relevant to disease.

4.
NPJ Vaccines ; 9(1): 58, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38467663

Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials.

5.
Immunity ; 56(10): 2425-2441.e14, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37689061

Nanoparticles for multivalent display and delivery of vaccine antigens have emerged as a promising avenue for enhancing B cell responses to protein subunit vaccines. Here, we evaluated B cell responses in rhesus macaques immunized with prefusion-stabilized respiratory syncytial virus (RSV) F glycoprotein trimer compared with nanoparticles displaying 10 or 20 copies of the same antigen. We show that multivalent display skews antibody specificities and drives epitope-focusing of responding B cells. Antibody cloning and repertoire sequencing revealed that focusing was driven by the expansion of clonally distinct B cells through recruitment of diverse precursors. We identified two antibody lineages that developed either ultrapotent neutralization or pneumovirus cross-neutralization from precursor B cells with low initial affinity for the RSV-F immunogen. This suggests that increased avidity by multivalent display facilitates the activation and recruitment of these cells. Diversification of the B cell response by multivalent nanoparticle immunogens has broad implications for vaccine design.

7.
JCI Insight ; 8(17)2023 09 08.
Article En | MEDLINE | ID: mdl-37681412

Pathogenic mutations in mitochondrial (mt) tRNA genes that compromise oxidative phosphorylation (OXPHOS) exhibit heteroplasmy and cause a range of multisyndromic conditions. Although mitochondrial disease patients are known to suffer from abnormal immune responses, how heteroplasmic mtDNA mutations affect the immune system at the molecular level is largely unknown. Here, in mice carrying pathogenic C5024T in mt-tRNAAla and in patients with mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes (MELAS) syndrome carrying A3243G in mt-tRNALeu, we found memory T and B cells to have lower pathogenic mtDNA mutation burdens than their antigen-inexperienced naive counterparts, including after vaccination. Pathogenic burden reduction was less pronounced in myeloid compared with lymphoid lineages, despite C5024T compromising macrophage OXPHOS capacity. Rapid dilution of the C5024T mutation in T and B cell cultures could be induced by antigen receptor-triggered proliferation and was accelerated by metabolic stress conditions. Furthermore, we found C5024T to dysregulate CD8+ T cell metabolic remodeling and IFN-γ production after activation. Together, our data illustrate that the generation of memory lymphocytes shapes the mtDNA landscape, wherein pathogenic variants dysregulate the immune response.


Acidosis, Lactic , Receptors, Antigen , Animals , Mice , Mutation , DNA, Mitochondrial/genetics , RNA, Transfer/genetics
9.
Article En | MEDLINE | ID: mdl-37388275

Analysis of an individual's immunoglobulin or T cell receptor gene repertoire can provide important insights into immune function. High-quality analysis of adaptive immune receptor repertoire sequencing data depends upon accurate and relatively complete germline sets, but current sets are known to be incomplete. Established processes for the review and systematic naming of receptor germline genes and alleles require specific evidence and data types, but the discovery landscape is rapidly changing. To exploit the potential of emerging data, and to provide the field with improved state-of-the-art germline sets, an intermediate approach is needed that will allow the rapid publication of consolidated sets derived from these emerging sources. These sets must use a consistent naming scheme and allow refinement and consolidation into genes as new information emerges. Name changes should be minimised, but, where changes occur, the naming history of a sequence must be traceable. Here we outline the current issues and opportunities for the curation of germline IG/TR genes and present a forward-looking data model for building out more robust germline sets that can dovetail with current established processes. We describe interoperability standards for germline sets, and an approach to transparency based on principles of findability, accessibility, interoperability, and reusability.

10.
Nat Commun ; 14(1): 3713, 2023 06 22.
Article En | MEDLINE | ID: mdl-37349310

Licensed rabies virus vaccines based on whole inactivated virus are effective in humans. However, there is a lack of detailed investigations of the elicited immune response, and whether responses can be improved using novel vaccine platforms. Here we show that two doses of a lipid nanoparticle-formulated unmodified mRNA vaccine encoding the rabies virus glycoprotein (RABV-G) induces higher levels of RABV-G specific plasmablasts and T cells in blood, and plasma cells in the bone marrow compared to two doses of Rabipur in non-human primates. The mRNA vaccine also generates higher RABV-G binding and neutralizing antibody titers than Rabipur, while the degree of somatic hypermutation and clonal diversity of the response are similar for the two vaccines. The higher overall antibody titers induced by the mRNA vaccine translates into improved cross-neutralization of related lyssavirus strains, suggesting that this platform has potential for the development of a broadly protective vaccine against these viruses.


Rabies Vaccines , Rabies virus , Rabies , Animals , Humans , Rabies/prevention & control , Rabies Vaccines/genetics , Broadly Neutralizing Antibodies , RNA, Messenger , Antibodies, Viral , Rabies virus/genetics , Glycoproteins
11.
Cells ; 12(9)2023 04 24.
Article En | MEDLINE | ID: mdl-37174629

Lipopolysaccharide (LPS) stimulates dual receptor signaling by bridging the B cell receptor and Toll-like receptor 4 (BCR/TLR4). B cells from IκBNS-deficient bumble mice treated with LPS display reduced proliferative capacity and impaired plasma cell differentiation. To improve our understanding of the regulatory role of IκBNS in B cell activation and differentiation, we investigated the BCR and TLR4 signaling pathways separately by using dimeric anti-IgM Fab (F(ab')2) or lipid A, respectively. IκBNS-deficient B cells exhibited reduced survival and defective proliferative capacity in response to lipid A compared to B cells from wildtype (wt) control mice. In contrast, anti-IgM stimulation of bumble B cells resulted in enhanced viability and increased differentiation into CD138+ cells compared to control B cells. Anti-IgM-stimulated IκBNS-deficient B cells also showed enhanced cycle progression with increased levels of c-Myc and cyclin D2, and augmented levels of pCD79a, pSyk, and pERK compared to control B cells. These results suggest that IκBNS acts as a negative regulator of BCR signaling and a positive regulator of TLR4 signaling in mouse B cells.


Lipopolysaccharides , Toll-Like Receptor 4 , Animals , Mice , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/metabolism , Lipid A , B-Lymphocytes/metabolism , Receptors, Antigen, B-Cell
12.
Immunol Lett ; 259: 24-29, 2023 07.
Article En | MEDLINE | ID: mdl-37209913

Immunoglobulin (IG) genes, encoding B cell receptors (BCRs), are fundamental components of the mammalian immune system, which evolved to recognize the diverse antigenic universe present in nature. To handle these myriad inputs, BCRs are generated through combinatorial recombination of a set of highly polymorphic germline genes, resulting in a vast repertoire of antigen receptors that initiate responses to pathogens and regulate commensals. Following antigen recognition and B cell activation, memory B cells and plasma cells form, allowing for the development of anamnestic antibody (Ab) responses. How inherited variation in IG genes impacts host traits, disease susceptibility, and Ab recall responses is a topic of great interest. Here, we consider approaches to translate emerging knowledge about IG genetic diversity and expressed repertoires to inform our understanding of Ab function in health and disease etiology. As our understanding of IG genetics grows, so will our need for tools to decipher preferences for IG gene or allele usage in different contexts, to better understand antibody responses at the population level.


Immunoglobulins , Receptors, Antigen, B-Cell , Animals , Humans , Immunoglobulins/genetics , Receptors, Antigen, B-Cell/genetics , Genes, Immunoglobulin , Genotype , Alleles , Mammals/genetics
13.
Front Immunol ; 14: 1125884, 2023.
Article En | MEDLINE | ID: mdl-37114042

We present a new Rep-Seq analysis tool called corecount, for analyzing genotypic variation in immunoglobulin (IG) and T cell receptor (TCR) genes. corecount is highly efficient at identifying V alleles, including those that are infrequently used in expressed repertoires and those that contain 3' end variation that are otherwise refractory to reliable identification during germline inference from expressed libraries. Furthermore, corecount facilitates accurate D and J gene genotyping. The output is highly reproducible and facilitates the comparison of genotypes from multiple individuals, such as those from clinical cohorts. Here, we applied corecount to the genotypic analysis of IgM libraries from 16 individuals. To demonstrate the accuracy of corecount, we Sanger sequenced all the heavy chain IG alleles (65 IGHV, 27 IGHD and 7 IGHJ) from one individual from whom we also produced two independent IgM Rep-seq datasets. Genomic analysis revealed that 5 known IGHV and 2 IGHJ sequences are truncated in current reference databases. This dataset of genomically validated alleles and IgM libraries from the same individual provides a useful resource for benchmarking other bioinformatic programs that involve V, D and J assignments and germline inference, and may facilitate the development of AIRR-Seq analysis tools that can take benefit from the availability of more comprehensive reference databases.


Immunoglobulin Variable Region , Humans , Genotype , Immunoglobulin Variable Region/genetics , Base Sequence , Immunoglobulin M/genetics
14.
Front Virol ; 3: 1128253, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-37041983

The antibody response to SARS-CoV-2 shows biased immunoglobulin heavy chain variable (IGHV) gene usage, allowing definition of genetic signatures for some classes of neutralizing antibodies. We investigated IGHV gene usage frequencies by sorting spike-specific single memory B cells from individuals infected with SARS-CoV-2 early in the pandemic. From two study participants and 703 spikespecific B cells, the most used genes were IGHV1-69, IGHV3-30-3, and IGHV3-30. Here, we focused on the IGHV3-30 group of genes and an IGHV3-30-3-using ultrapotent neutralizing monoclonal antibody, CAB-F52, which displayed broad neutralizing activity also in its germline-reverted form. IGHV3-30-3 is encoded by a region of the IGH locus that is highly variable at both the allelic and structural levels. Using personalized IG genotyping, we found that 4 of 14 study participants lacked the IGHV3-30-3 gene on both chromosomes, raising the question if other, highly similar IGHV genes could substitute for IGHV3-30-3 in persons lacking this gene. In the context of CAB-F52, we found that none of the tested IGHV3-33 alleles, but several IGHV3-30 alleles could substitute for IGHV3-30-3, suggesting functional redundancy between the highly homologous IGHV3-30 and IGHV3-30-3 genes for this antibody.

15.
Ann N Y Acad Sci ; 1524(1): 65-86, 2023 06.
Article En | MEDLINE | ID: mdl-37020354

The COVID-19 pandemic has taught us many things, among the most important of which is that vaccines are one of the cornerstones of public health that help make modern longevity possible. While several different vaccines have been successful at stemming the morbidity and mortality associated with various infectious diseases, many pathogens/diseases remain recalcitrant to the development of effective vaccination. Recent advances in vaccine technology, immunology, structural biology, and other fields may yet yield insight that will address these diseases; they may also help improve societies' preparedness for future pandemics. On June 1-4, 2022, experts in vaccinology from academia, industry, and government convened for the Keystone symposium "Progress in Vaccine Development for Infectious Diseases" to discuss state-of-the-art technologies, recent advancements in understanding vaccine-mediated immunity, and new aspects of antigen design to aid vaccine effectiveness.


COVID-19 , Communicable Diseases , Vaccines , Humans , Pandemics/prevention & control , COVID-19/prevention & control , Vaccines/therapeutic use , Vaccination , Vaccine Development
16.
Nat Commun ; 14(1): 2249, 2023 04 19.
Article En | MEDLINE | ID: mdl-37076511

Vaccination of SARS-CoV-2 convalescent individuals generates broad and potent antibody responses. Here, we isolate 459 spike-specific monoclonal antibodies (mAbs) from two individuals who were infected with the index variant of SARS-CoV-2 and later boosted with mRNA-1273. We characterize mAb genetic features by sequence assignments to the donors' personal immunoglobulin genotypes and assess antibody neutralizing activities against index SARS-CoV-2, Beta, Delta, and Omicron variants. The mAbs used a broad range of immunoglobulin heavy chain (IGH) V genes in the response to all sub-determinants of the spike examined, with similar characteristics observed in both donors. IGH repertoire sequencing and B cell lineage tracing at longitudinal time points reveals extensive evolution of SARS-CoV-2 spike-binding antibodies from acute infection until vaccination five months later. These results demonstrate that highly polyclonal repertoires of affinity-matured memory B cells are efficiently recalled by vaccination, providing a basis for the potent antibody responses observed in convalescent persons following vaccination.


COVID-19 , SARS-CoV-2 , Humans , Cell Lineage , COVID-19/prevention & control , B-Lymphocytes , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics , Vaccination
17.
Euro Surveill ; 28(13)2023 03.
Article En | MEDLINE | ID: mdl-36995373

BackgroundThe current SARS-CoV-2 pandemic has highlighted a need for easy and safe blood sampling in combination with accurate serological methodology. Venipuncture for testing is usually performed by trained staff at healthcare centres. Long travel distances to healthcare centres in rural regions may introduce a bias of testing towards relatively large communities with closer access. Rural regions are therefore often not represented in population-based data.AimThe aim of this retrospective cohort study was to develop and implement a strategy for at-home testing in a rural region of Sweden during spring 2021, and to evaluate its role to provide equal health care for its inhabitants.MethodsWe developed a sensitive method to measure antibodies to the S-protein of SARS-CoV-2 and optimised this assay for clinical use together with a strategy of at-home capillary blood sampling.ResultsWe demonstrated that our ELISA gave comparable results after analysis of capillary blood or serum from SARS-CoV-2-experienced individuals. We demonstrated stability of the assay under conditions that reflected temperature and humidity during winter or summer. By assessment of capillary blood samples from 4,122 individuals, we could show both feasibility of the strategy and that implementation shifted the geographical spread of testing in favour of rural areas.ConclusionImplementation of at-home sampling enabled citizens living in remote rural areas access to centralised and sensitive laboratory antibody tests. The strategy for testing used here could therefore enable disease control authorities to get rapid access to information concerning immunity to infectious diseases, even across vast geographical distance.


COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Retrospective Studies , Sweden/epidemiology , COVID-19 Testing , Antibodies, Viral
18.
Front Immunol ; 14: 1073414, 2023.
Article En | MEDLINE | ID: mdl-36798124

Immunoglobulin heavy chain (IGH) germline gene variations influence the B cell receptor repertoire, with resulting biological consequences such as shaping our response to infections and altering disease susceptibilities. However, the lack of information on polymorphism frequencies in the IGH loci at the population level makes association studies challenging. Here, we genotyped a pilot group of 30 individuals with rheumatoid arthritis (RA) to examine IGH allele content and frequencies in this group. Eight novel IGHV alleles and one novel IGHJ allele were identified in the study. 15 cases were haplotypable using heterozygous IGHJ6 or IGHD anchors. One variant, IGHV4-34*01_S0742, was found in three out of 30 cases and included a single nucleotide change resulting in a non-canonical recombination signal sequence (RSS) heptamer. This variant allele, shown by haplotype analysis to be non-expressed, was also found in three out of 30 healthy controls and matched a single nucleotide polymorphism (SNP) described in the 1000 Genomes Project (1KGP) collection with frequencies that varied between population groups. Our finding of previously unreported alleles in a relatively small group of individuals with RA illustrates the need for baseline information about IG allelic frequencies in targeted study groups in preparation for future analysis of these genes in disease association studies.


Arthritis, Rheumatoid , Immunoglobulin Heavy Chains , Humans , Immunoglobulin Heavy Chains/genetics , Alleles , Genes, Immunoglobulin Heavy Chain , Arthritis, Rheumatoid/genetics , Polymorphism, Single Nucleotide
19.
Immunity ; 56(3): 635-652.e6, 2023 03 14.
Article En | MEDLINE | ID: mdl-36796364

Human T cell receptors (TCRs) are critical for mediating immune responses to pathogens and tumors and regulating self-antigen recognition. Yet, variations in the genes encoding TCRs remain insufficiently defined. Detailed analysis of expressed TCR alpha, beta, gamma, and delta genes in 45 donors from four human populations-African, East Asian, South Asian, and European-revealed 175 additional TCR variable and junctional alleles. Most of these contained coding changes and were present at widely differing frequencies in the populations, a finding confirmed using DNA samples from the 1000 Genomes Project. Importantly, we identified three Neanderthal-derived, introgressed TCR regions including a highly divergent TRGV4 variant, which mediated altered butyrophilin-like molecule 3 (BTNL3) ligand reactivity and was frequent in all modern Eurasian population groups. Our results demonstrate remarkable variation in TCR genes in both individuals and populations, providing a strong incentive for including allelic variation in studies of TCR function in human biology.


Antigens , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/genetics , Genes, T-Cell Receptor
20.
Immunity ; 56(1): 193-206.e7, 2023 01 10.
Article En | MEDLINE | ID: mdl-36574772

The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.


COVID-19 , SARS-CoV-2 , Humans , Immunoglobulin Heavy Chains/genetics , COVID-19/genetics , Antibodies, Viral , Polymorphism, Genetic , Antibodies, Neutralizing , Germ Cells
...