Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Front Microbiol ; 14: 1204102, 2023.
Article En | MEDLINE | ID: mdl-37779687

Burning coal seams, characterized by massive carbon monoxide (CO) emissions, the presence of secondary sulfates, and high temperatures, represent suitable environments for thermophilic sulfate reduction. The diversity and activity of dissimilatory sulfate reducers in these environments remain unexplored. In this study, using metagenomic approaches, in situ activity measurements with a radioactive tracer, and cultivation we have shown that members of the genus Desulfofundulus are responsible for the extremely high sulfate reduction rate (SRR) in burning lignite seams in the Altai Mountains. The maximum SRR reached 564 ± 21.9 nmol S cm-3 day-1 at 60°C and was of the same order of magnitude for both thermophilic (60°C) and mesophilic (23°C) incubations. The 16S rRNA profiles and the search for dsr gene sequences in the metagenome revealed members of the genus Desulfofundulus as the main sulfate reducers. The thermophilic Desulfofundulus sp. strain Al36 isolated in pure culture, did not grow at temperatures below 50°C, but produced spores that germinated into metabolically active cells at 20 and 15°C. Vegetative cells germinating from spores produced up to 0.738 ± 0.026 mM H2S at 20°C and up to 0.629 ± 0.007 mM H2S at 15°C when CO was used as the sole electron donor. The Al36 strain maintains significant production of H2S from sulfate over a wide temperature range from 15°C to 65°C, which is important in variable temperature biotopes such as lignite burning seams. Burning coal seams producing CO are ubiquitous throughout the world, and biogenic H2S may represent an overlooked significant flux to the atmosphere. The thermophilic spore outgrowth and their metabolic activity at temperatures below the growth minimum may be important for other spore-forming bacteria of environmental, industrial and clinical importance.

2.
Biology (Basel) ; 12(5)2023 May 15.
Article En | MEDLINE | ID: mdl-37237535

The natural combustion of underground coal seams leads to the formation of gas, which contains molecular hydrogen and carbon monoxide. In places where hot coal gases are released to the surface, specific thermal ecosystems are formed. Here, 16S rRNA gene profiling and shotgun metagenome sequencing were employed to characterize the taxonomic diversity and genetic potential of prokaryotic communities of the near-surface ground layer near hot gas vents in an open quarry heated by a subsurface coal fire. The communities were dominated by only a few groups of spore-forming Firmicutes, namely the aerobic heterotroph Candidatus Carbobacillus altaicus, the aerobic chemolitoautotrophs Kyrpidia tusciae and Hydrogenibacillus schlegelii, and the anaerobic chemolithoautotroph Brockia lithotrophica. Genome analysis predicted that these species can obtain energy from the oxidation of hydrogen and/or carbon monoxide in coal gases. We assembled the first complete closed genome of a member of uncultured class-level division DTU015 in the phylum Firmicutes. This bacterium, 'Candidatus Fermentithermobacillus carboniphilus' Bu02, was predicted to be rod-shaped and capable of flagellar motility and sporulation. Genome analysis showed the absence of aerobic and anaerobic respiration and suggested chemoheterotrophic lifestyle with the ability to ferment peptides, amino acids, N-acetylglucosamine, and tricarboxylic acid cycle intermediates. Bu02 bacterium probably plays the role of a scavenger, performing the fermentation of organics formed by autotrophic Firmicutes supported by coal gases. A comparative genome analysis of the DTU015 division revealed that most of its members have a similar lifestyle.

3.
Microorganisms ; 11(4)2023 Mar 25.
Article En | MEDLINE | ID: mdl-37110261

Sulphate-reducing bacteria, primarily Desulfovibrio, are responsible for the active generation of H2S in swine production waste. The model species for sulphate reduction studies, Desulfovibrio vulgaris strain L2, was previously isolated from swine manure characterized by high rates of dissimilatory sulphate reduction. The source of electron acceptors in low-sulphate swine waste for the high rate of H2S formation remains uncertain. Here, we demonstrate the ability of the L2 strain to use common animal farming supplements including L-lysine-sulphate, gypsum and gypsum plasterboards as electron acceptors for H2S production. Genome sequencing of strain L2 revealed the presence of two megaplasmids and predicted resistance to various antimicrobials and mercury, which was confirmed in physiological experiments. Most of antibiotic resistance genes (ARG) are carried by two class 1 integrons located on the chromosome and on the plasmid pDsulf-L2-2. These ARGs, predicted to confer resistance to beta-lactams, aminoglycosides, lincosamides, sulphonamides, chloramphenicol and tetracycline, were probably laterally acquired from various Gammaproteobacteria and Firmicutes. Resistance to mercury is likely enabled by two mer operons also located on the chromosome and on pDsulf-L2-2 and acquired via horizontal gene transfer. The second megaplasmid, pDsulf-L2-1, encoded nitrogenase, catalase and type III secretion system suggesting close contact of the strain with intestinal cells in the swine gut. The location of ARGs on mobile elements allows us to consider D. vulgaris strain L2 as a possible vector transferring antimicrobials resistance determinants between the gut microbiote and microbial communities in environmental biotopes.

4.
Microorganisms ; 11(2)2023 Feb 04.
Article En | MEDLINE | ID: mdl-36838366

The diversity and activity of sulfate-reducing bacteria (SRB) in the camel gut remains largely unexplored. An abundant SRB community has been previously revealed in the feces of Bactrian camels (Camelus bactrianus). This study aims to combine the 16S rRNA gene profiling, sulfate reduction rate (SRR) measurement with a radioactive tracer, and targeted cultivation to shed light on SRB activity in the camel gut. Fresh feces of 55 domestic Bactrian camels grazing freely on semi-arid mountain pastures in the Kosh-Agach district of the Russian Altai area were analyzed. Feces were sampled in early winter at an ambient temperature of -15 °C, which prevented possible contamination. SRR values measured with a radioactive tracer in feces were relatively high and ranged from 0.018 to 0.168 nmol S cm-3 day-1. The 16S rRNA gene profiles revealed the presence of Gram-negative Desulfovibrionaceae and spore-forming Desulfotomaculaceae. Targeted isolation allowed us to obtain four pure culture isolates belonging to Desulfovibrio and Desulforamulus. An active SRB community may affect the iron and copper availability in the camel intestine due to metal ions precipitation in the form of sparingly soluble sulfides. The copper-iron sulfide, chalcopyrite (CuFeS2), was detected by X-ray diffraction in 36 out of 55 analyzed camel feces. In semi-arid areas, gypsum, like other evaporite sulfates, can be used as a solid-phase electron acceptor for sulfate reduction in the camel gastrointestinal tract.

5.
Microb Ecol ; 86(3): 1934-1946, 2023 Oct.
Article En | MEDLINE | ID: mdl-36821051

The microbial community of subsurface environments remains understudied due to limited access to deep strata and aquifers. Coal-bed methane (CBM) production is associated with a large number of wells pumping water out of coal seams. CBM wells provide access to deep biotopes associated with coal-bed water. Temperature is one of the key constraints for the distribution and activity of subsurface microorganisms, including sulfate-reducing prokaryotes (SRP). The 16S rRNA gene amplicon sequencing coupled with in situ sulfate reduction rate (SRR) measurements with a radioactive tracer and cultivation at various temperatures revealed that the SRP community of the coal bed water of the Kuzbass coal basin is characterized by an overlapping mesophilic-psychrophilic boundary. The genus Desulfovibrio comprised a significant share of the SRP community. The D. psychrotolerans strain 1203, which has a growth optimum below 20 °C, dominated the cultivated SRP. SRR in coal bed water varied from 0.154 ± 0.07 to 2.04 ± 0.048 nmol S cm-3 day-1. Despite the ambient water temperature of ~ 10-20 °C, an active thermophilic SRP community occurred in the fracture water, which reduced sulfate with the rate of 0.159 ± 0.023 to 0.198 ± 0.007 nmol S cm-3 day-1 at 55 °C. A novel moderately thermophilic "Desulforudis audaxviator"-clade SRP has been isolated in pure culture from the coal-bed water.


Desulfovibrio , Groundwater , Bacteria , Coal/microbiology , RNA, Ribosomal, 16S/genetics , Desulfovibrio/genetics , Water , Methane , Sulfates
6.
Microorganisms ; 10(11)2022 Nov 20.
Article En | MEDLINE | ID: mdl-36422370

The spread of antibiotic resistance genes (ARGs) that are present in livestock manures, which are discharged into the environment, is a severe threat to human and animal health. Here, we used 16S rRNA gene profiling and metagenomic analysis to characterize microbial community composition and antibiotic resistance in a manure storage lagoon from a large-scale swine finishing facility. Manure samples were collected at intervals of two years. Both the prokaryotic community and the resistome were dominated by the Firmicutes, Proteobacteria and Bacteroidota. Metagenomic analysis of two samples revealed 726 and 641 ARGs classified into 59 and 46 AMR gene families. Besides multidrug efflux pumps, the predominating ARGs potentially encoded resistance to tetracyclines, macrolide-lincosamide-streptogramin, aminoglycosides, peptide antibiotics, rifamycin, chloramphenicol, and beta-lactams. Genes from all predominant AMR gene families were found in both samples indicating overall long-term stability of the resistome. Antibiotic efflux pumps were the primary type of ARGs in the Proteobacteria, while antibiotic target alteration or protection was the main mechanism of resistance in the Firmicutes, Actinobacteriota and Bacteroidota. Metagenome-assembled genomes (MAG) of four multidrug-resistant strains were assembled. The first MAG, assigned to Escherichia flexneri, contained 46 ARGs, including multidrug efflux pumps, modified porins, beta-lactamases, and genes conferring resistance to peptide antibiotics. The second MAG, assigned to the family Alcaligenaceae, contained 18 ARGs encoding resistance to macrolide-lincosamide-streptogramin, tetracyclines, aminoglycosides and diaminopyrimidins. Two other MAGs representing the genera Atopostipes and Prevotella, contained four and seven ARGs, respectively. All these MAGs represented minor community members and accounted for less than 0.3% of the whole metagenome. Overall, a few lineages originated from the gut but relatively rare in the manure storage lagoon, are the main source of ARGs and some of them carry multiple resistance determinants.

7.
Microorganisms ; 10(11)2022 Oct 29.
Article En | MEDLINE | ID: mdl-36363732

Fermented milk products (FMPs) have numerous health properties, making them an important part of our nutrient budget. Based on traditions, history and geography, there are different preferences and recipes for FMP preparation in distinct regions of the world and Russia in particular. A number of dairy products, both widely occurring and region-specific, were sampled in the households and local markets of the Caucasus republics, Buryatia, Altai, and the Far East and European regions of Russia. The examined FMPs were produced from cow, camel, mare's or mixed milk, in the traditional way, without adding commercial starter cultures. Lactate and acetate were the major volatile fatty acids (VFA) of the studied FMPs, while succinate, formate, propionate and n-butyrate were present in lower concentrations. Bacterial communities analyzed by 16S rRNA gene V4 fragment amplicon sequencing showed that Firmicutes (Lactococcus, Lactobacillus, Streptococcus, Lentilactobacillus and Leuconostoc) was the predominant phylum in all analyzed FMPs, followed by Proteobacteria (Acetobacter, Klebsiella, Pseudomonas and Citrobacter). Lactobacillus (mainly in beverages) or Lactococcus (mainly in creamy and solid products) were the most abundant community-forming genera in FMPs where raw milk was used and fermentation took place at (or below) room temperature. In turn, representatives of Streptococcus genus dominated the FMPs made from melted or pasteurized milk and fermented at elevated temperatures (such as ryazhenka, cottage cheese and matsoni-like products). It was revealed that the microbial diversity of koumiss, shubat, ryazhenka, matsoni-like products, chegen, sour cream and bryndza varied slightly within each type and correlated well with the same products from other regions and countries. On the other hand, the microbiomes of kefir, prostokvasha, ayran, cottage cheese and suluguni-like cheese were more variable and were shaped by the influence of particular factors linked with regional differences and traditions expressed in specificities in the production process. The microbial diversity of aarts, khurunga, khuruud, tan, ayran and suluguni-like cheese was studied here, to our knowledge, for the first time. The results of this study emphasize the overall similarity of the microbial communities of various FMPs on the one hand, and specificities of regional products on the other. The latter are of particular value in the age of globalization when people have begun searching for new and unusual products and properties. Speaking more specifically, these novel products, with their characteristic communities, might be used for the development of novel microbial associations (i.e., starters) to produce novel products with improved or unique properties.

9.
Microorganisms ; 9(12)2021 Dec 10.
Article En | MEDLINE | ID: mdl-34946159

The sulphate-reducing bacteria (SRB) of genus Desulfovibrio are a group of prokaryotes associated with autism spectrum disorders (ASD). The connection between the elevated numbers of Desulfovibrio in the gut of children with ASD compared with healthy children remains unresolved. A conceivable consequence of SRB overgrowth in the gut is the conversion of bioavailable iron into low-soluble crystalline iron sulphides, causing iron deficiency in the organism. In this study, we report the draft genome sequence and physiological features of the first cultivable isolate from a patient with ASD, Desulfovibrio desulfuricans strain AY5.The capability of the strain to produce crystalline iron sulphides was studied under different pH conditions. The most notable greigite(Fe3S4) and pyrite (FeS2) formation was revealed at pH 6.0, which suggests that the iron loss due to insoluble sulphide formation may occur in the proximal part of the gastrointestinal tract. Strain AY5 was adapted to grow under nitrogen-limiting conditions by N2 fixation. The urease found in the strain's genome may play a role in resistance to acidic pH.

10.
Front Microbiol ; 12: 760289, 2021.
Article En | MEDLINE | ID: mdl-34745068

Two strains of filamentous, colorless sulfur bacteria were isolated from bacterial fouling in the outflow of hydrogen sulfide-containing waters from a coal mine (Thiothrix sp. Ku-5) and on the seashore of the White Sea (Thiothrix sp. AS). Metagenome-assembled genome (MAG) A52 was obtained from a sulfidic spring in the Volgograd region, Russia. Phylogenetic analysis based on the 16S rRNA gene sequences showed that all genomes represented the genus Thiothrix. Based on their average nucleotide identity and digital DNA-DNA hybridization data these new isolates and the MAG represent three species within the genus Thiothrix with the proposed names Thiothrix subterranea sp. nov. Ku-5T, Thiothrix litoralis sp. nov. AST, and "Candidatus Thiothrix anitrata" sp. nov. A52. The complete genome sequences of Thiothrix fructosivorans QT and Thiothrix unzii A1T were determined. Complete genomes of seven Thiothrix isolates, as well as two MAGs, were used for pangenome analysis. The Thiothrix core genome consisted of 1,355 genes, including ones for the glycolysis, the tricarboxylic acid cycle, the aerobic respiratory chain, and the Calvin cycle of carbon fixation. Genes for dissimilatory oxidation of reduced sulfur compounds, namely the branched SOX system (SoxAXBYZ), direct (soeABC) and indirect (aprAB, sat) pathways of sulfite oxidation, sulfur oxidation complex Dsr (dsrABEFHCEMKLJONR), sulfide oxidation systems SQR (sqrA, sqrF), and FCSD (fccAB) were found in the core genome. Genomes differ in the set of genes for dissimilatory reduction of nitrogen compounds, nitrogen fixation, and the presence of various types of RuBisCO.

11.
Article En | MEDLINE | ID: mdl-34255623

A novel, spore-forming, acidophilic and metal-resistant sulfate-reducing bacterium, strain OLT, was isolated from a microbial mat in a tailing dam at a gold ore mining site. Cells were slightly curved immotile rods, 0.5 µm in diameter and 2.0-3.0 µm long. Cells were stained Gram-negative, despite the Gram-positive cell structure revealed by electron microscopy of ultrathin layers. OLT grew at pH 4.0-7.0 with an optimum at 5.5. OLT utilised H2, lactate, pyruvate, malate, formate, propionate, ethanol, glycerol, glucose, fructose, sucrose, peptone and tryptone as electron donors for sulfate reduction. Sulfate, sulfite, thiosulfate, nitrate and fumarate were used as electron acceptors in the presence of lactate. Elemental sulfur, iron (III), and arsenate did not serve as electron acceptors. The major cellular fatty acids were C16:1ω7c (39.0 %) and C16 : 0 (12.1 %). The draft genome of OLT was 5.29 Mb in size and contained 4909 protein-coding genes. The 16S rRNA gene sequence placed OLT within the phylum Firmicutes, class Clostridia, family Peptococcaceae, genus Desulfosporosinus. Desulfosporosinus nitroreducens 59.4BT was the closest relative with 97.6 % sequence similarity. On the basis of phenotypic and phylogenetic characteristics, strain OLT represents a novel species within the genus Desulfosporosinus, for which we propose the name Desulfosporosinus metallidurans sp. nov. with the type strain OLT (=DSM 104464T=VKM В-3021T).


Mining , Peptococcaceae/classification , Phylogeny , Acids , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Oxidation-Reduction , Peptococcaceae/isolation & purification , RNA, Ribosomal, 16S/genetics , Russia , Sequence Analysis, DNA , Sulfates/metabolism
12.
Sci Rep ; 11(1): 10720, 2021 05 21.
Article En | MEDLINE | ID: mdl-34021225

There is still a lack of understanding of H2S formation in agricultural waste, which leads to poor odour prevention and control. Microbial sulfate reduction is a major process contributing to sulfide formation in natural and technogenic environments with high sulfate and low oxygen concentration. Agricultural waste can be considered a low-sulfate system with no obvious input of oxidised sulfur compounds. The purpose of this study was to characterise a microbial community participating in H2S production and estimate the microbial sulfate reduction rate (SRR) in manure slurry from a large-scale swine finishing facility in Western Siberia. In a series of manure slurry microcosms, we identified bacterial consortia by 16S rRNA gene profiling and metagenomic analysis and revealed that sulfate-reducing Desulfovibrio were key players responsible for H2S production. The SRR measured with radioactive sulfate in manure slurry was high and comprised 7.25 nmol S cm-3 day-1. Gypsum may be used as a solid-phase electron acceptor for sulfate reduction. Another plausible source of sulfate is a swine diet, which often contains supplements in the form of sulfates, including lysine sulfate. Low-sulfur diet, manure treatment with iron salts, and avoiding gypsum bedding are possible ways to mitigate H2S emissions from swine manure.


Biotransformation , Desulfovibrio/metabolism , Hydrogen Sulfide/metabolism , Microbiota , Sulfates/metabolism , Animals , Bacteria/metabolism , Environmental Microbiology , Environmental Monitoring , Farms , Hydrogen Sulfide/analysis , Soil/chemistry , Soil Microbiology , Sulfates/analysis , Swine
13.
Microorganisms ; 9(5)2021 Apr 28.
Article En | MEDLINE | ID: mdl-33924824

Thermal ecosystems associated with areas of underground burning coal seams are rare and poorly understood in comparison with geothermal objects. We studied the microbial communities associated with gas vents from the coal-fire in the mining wastes in the Kemerovo region of the Russian Federation. The temperature of the ground heated by the hot coal gases and steam coming out to the surface was 58 °C. Analysis of the composition of microbial communities revealed the dominance of Ktedonobacteria (the phylum Chloroflexi), known to be capable of oxidizing hydrogen and carbon monoxide. Thermophilic hydrogenotrophic Firmicutes constituted a minor part of the community. Among the well-known thermophiles, members of the phyla Aquificae, Deinococcus-Thermus and Bacteroidetes were also found. In the upper ground layer, Acidobacteria, Verrucomicrobia, Actinobacteria, Planctomycetes, as well as Proteobacteria of the alpha and gamma classes, typical of soils, were detected; their relative abundancies decreased with depth. The phylum Verrucomicrobia was dominated by Candidatus Udaeobacter, aerobic heterotrophs capable of generating energy through the oxidation of hydrogen present in the atmosphere in trace amounts. Archaea made up a small part of the communities and were represented by thermophilic ammonium-oxidizers. Overall, the community was dominated by bacteria, whose cultivated relatives are able to obtain energy through the oxidation of the main components of coal gases, hydrogen and carbon monoxide, under aerobic conditions.

14.
Environ Microbiol ; 23(7): 3585-3598, 2021 07.
Article En | MEDLINE | ID: mdl-32869496

Most microorganisms from deep terrestrial subsurface remain yet uncultured. Recent achievements in recovery of metagenome-assembled genomes (MAG) provide clues for improving cultivation via metabolic reconstructions and other genomic characteristics. Here we report the isolation in pure culture of a thermophilic spirochete with the use of MAGs binned from metagenomes of the deep (>2 km) aquifers broached by two artesian boreholes in Western Siberia. The organism constitutes a minor share in the aquifer microbial community and could not be cultivated by traditional techniques. The obtained two pure culture isolates along with three bacteria identified by MAGs represent a novel family-level lineage in the order Brevinematales. Based on genomic and phenotypic characteristics the novel spirochete is proposed to be classified as Longinema margulisiae gen. nov., sp. nov. within a novel family, Longinemaceae fam. nov. Both cultivated strains, NST and N5R, are anaerobic hemoorganoheterotrophes growing by fermentation of starch and a few sugars. They can form recalcitrant round bodies under unfavourable growth conditions, which survive up to 15 min at 95°C and can revert to the original helical cells. We suggest that the round bodies may facilitate global distribution of this lineage, detected from molecular signaturesand colonization of subsurface environments.


Metagenome , Microbiota , Bacteria/genetics , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spirochaetales
15.
Front Microbiol ; 11: 572252, 2020.
Article En | MEDLINE | ID: mdl-33013807

To get insights into microbial diversity and biogeochemical processes in the terrestrial deep subsurface aquifer, we sequenced the metagenome of artesian water collected at a 2.8 km deep oil exploration borehole 5P in Western Siberia, Russia. We obtained 71 metagenome-assembled genomes (MAGs), altogether comprising 93% of the metagenome. Methanogenic archaea accounted for about 20% of the community and mostly belonged to hydrogenotrophic Methanobacteriaceae; acetoclastic and methylotrophic lineages were less abundant. ANME archaea were not found. The most numerous bacteria were the Firmicutes, Ignavibacteriae, Deltaproteobacteria, Chloroflexi, and Armatimonadetes. Most of the community was composed of anaerobic heterotrophs. Only six MAGs belonged to sulfate reducers. These MAGs accounted for 5% of the metagenome and were assigned to the Firmicutes, Deltaproteobacteria, Candidatus Kapabacteria, and Nitrospirae. Organotrophic bacteria carrying cytochrome c oxidase genes and presumably capable of aerobic respiration mostly belonged to the Chloroflexi, Ignavibacteriae, and Armatimonadetes. They accounted for 13% of the community. The first complete closed genomes were obtained for members of the Ignavibacteriae SJA-28 lineage and the candidate phylum Kapabacteria. Metabolic reconstruction of the SJA-28 bacterium, designated Candidatus Tepidiaquacella proteinivora, predicted that it is an anaerobe growing on proteinaceous substrates by fermentation or anaerobic respiration. The Ca. Kapabacteria genome contained both the sulfate reduction pathway and cytochrome c oxidase. Presumably, the availability of buried organic matter of Mesozoic marine sediments, long-term recharge of the aquifer with meteoric waters and its spatial heterogeneity provided the conditions for the development of microbial communities, taxonomically and functionally more diverse than those found in oligotrophic underground ecosystems.

16.
Microorganisms ; 8(3)2020 Feb 25.
Article En | MEDLINE | ID: mdl-32106565

The candidate phyla radiation is a large monophyletic lineage comprising unculturable bacterial taxa with small cell and genome sizes, mostly known from genomes obtained from environmental sources without cultivation. Here, we present the closed complete genome of a member of the superphylum Microgenomates obtained from the metagenome of a deep subsurface thermal aquifer. Phylogenetic analysis indicates that the new bacterium, designated Ch65, represents a novel phylum-level lineage within the Microgenomates group, sibling to the candidate phylum Collierbacteria. The Ch65 genome has a highly unusual nucleotide composition with one strand of highly enriched in cytosine versus guanine throughout the whole length. Such nucleotide composition asymmetry, also detected in the members of Ca. Collierbacteria and Ca. Beckwithbacteria, suggests that most of the Ch65 chromosome is replicated in one direction. A genome analysis predicted that the Ch65 bacterium has fermentative metabolism and could produce acetate and lactate. It lacks respiratory capacity, as well as complete pathways for the biosynthesis of lipids, amino acids, and nucleotides. The Embden-Meyerhof glycolytic pathway and nonoxidative pentose phosphate pathway are mostly complete, although glucokinase, 6-phosphofructokinase, and transaldolase were not found. The Ch65 bacterium lacks secreted glycoside hydrolases and conventional transporters for importing sugars and amino acids. Overall, the metabolic predictions imply that Ch65 adopts the lifestyle of a symbiont/parasite, or a scavenger, obtaining resources from the lysed microbial biomass. We propose the provisional taxonomic assignment 'Candidatus Chazhemtobacterium aquaticus', genus 'Chazhemtobacterium', family 'Chazhemtobacteraceae' in the Microgenomates group.

17.
ISME J ; 13(8): 1947-1959, 2019 08.
Article En | MEDLINE | ID: mdl-30899075

An enigmatic uncultured member of Firmicutes, Candidatus Desulforudis audaxviator (CDA), is known by its genome retrieved from the deep gold mine in South Africa, where it formed a single-species ecosystem fuelled by hydrogen from water radiolysis. It was believed that in situ conditions CDA relied on scarce energy supply and did not divide for hundreds to thousand years. We have isolated CDA strain BYF from a 2-km-deep aquifer in Western Siberia and obtained a laboratory culture growing with a doubling time of 28.5 h. BYF uses not only H2 but also various organic electron donors for sulfate respiration. Growth required elemental iron, and ferrous iron did not substitute for it. A complex intracellular organization included gas vesicles, internal membranes, and electron-dense structures enriched in phosphorus, iron, and calcium. Genome comparison of BYF with the South African CDA revealed minimal differences mostly related to mobile elements and prophage insertions. Two genomes harbored <800 single-nucleotide polymorphisms and had nearly identical CRISPR loci. We suggest that spores with the gas vesicles may facilitate global distribution of CDA followed by colonization of suitable subsurface environments. Alternatively, a slow evolution rate in the deep subsurface could result in high genetic similarity of CDA populations at two sites spatially separated for hundreds of millions of years.


Groundwater/microbiology , Peptococcaceae/isolation & purification , Ecosystem , Evolution, Molecular , Genomics , Iron/metabolism , Peptococcaceae/classification , Peptococcaceae/genetics , Peptococcaceae/growth & development , Phylogeny , Siberia , South Africa , Sulfates/metabolism
18.
Anaerobe ; 56: 66-77, 2019 Apr.
Article En | MEDLINE | ID: mdl-30776428

Recent reports on antimicrobial effects of metallic Cu prompted this study of anaerobic microbial communities on copper surfaces. Widely circulating copper-containing coinage was used as a potential source for microorganisms that had had human contact and were tolerant to copper. This study reports on the isolation, characterization, and genome of an anaerobic sulfidogenic Tissierella sp. P1from copper-containing brass coinage. Dissimilatory (bi)sulfite reductase dsrAB present in strain P1 genome and the visible absorbance around 630 nm in the cells suggested the presence of a desulfoviridin-type protein. However, the sulfate reduction rate measurements with 35SO42- did not confirm the dissimilatory sulfate reduction by the strain. The P1 genome lacks APS reductase, sulfate adenylyltransferase, DsrC, and DsrMK necessary for dissimilatory sulfate reduction. The isolate produced up to 0.79 mM H2S during growth, possibly due to cysteine synthase (CysK) and/or cysteine desulfhydrase (CdsH) activities, encoded in the genome. The strain can tolerate up to 2.4 mM Cu2+(150 mg/l) in liquid medium, shows affinity to metallic copper, and can survive on copper-containing coins up to three days under ambient air and dry conditions. The genome sequence of strain P1 contained cutC, encoding a copper resistance protein, which distinguishes it from all other Tissierella strains with published genomes.


Copper/analysis , Environmental Microbiology , Firmicutes/classification , Firmicutes/isolation & purification , Sulfides/metabolism , Zinc/analysis , Anaerobiosis , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/isolation & purification , Bacteria, Anaerobic/metabolism , Copper/toxicity , Drug Tolerance , Firmicutes/metabolism , Genes, Bacterial , Genome, Bacterial , Hydrogensulfite Reductase/genetics , Metabolic Networks and Pathways/genetics , Numismatics , Zinc/toxicity
19.
Data Brief ; 22: 488-491, 2019 Feb.
Article En | MEDLINE | ID: mdl-30619927

Viral particles have been detected in the underground biosphere where they could be one of the main factors impacting microbial diversity, biogeochemistry and evolution. To characterize the viral component in the deep subsurface biosphere, we sequenced the metagenome of subsurface aquifer located in the Tomsk region of Russia, sampled via 2.8-km-deep borehole 5P. The de novo assembly of metagenomics sequences yielded three circular genomes assigned to bacteriophages of the order Caudovirales. The annotated genome sequences of these bacteriophages have been deposited in the GenBank database under the accession numbers MK113949, MK113950 and MK113951.

20.
Extremophiles ; 23(2): 189-200, 2019 Mar.
Article En | MEDLINE | ID: mdl-30600356

Bacteria of candidate phylum OP8 (Aminicenantes) have been identified in various terrestrial and marine ecosystems as a result of molecular analysis of microbial communities. So far, none of the representatives of Aminicenantes have been isolated in a pure culture. We assembled the near-complete genome of a member of Aminicenantes from the metagenome of the 2-km-deep subsurface thermal aquifer in Western Siberia and used genomic data to analyze the metabolic pathways of this bacterium and its ecological role. This bacterium, designated BY38, was predicted to be rod shaped, it lacks flagellar machinery but twitching motility is encoded. Analysis of the BY38 genome revealed a variety of glycosyl hydrolases that can enable utilization of carbohydrates, including chitin, cellulose, starch, mannose, galactose, fructose, fucose, rhamnose, maltose and arabinose. The reconstructed central metabolic pathways suggested that Aminicenantes bacterium BY38 is an anaerobic organotroph capable of fermenting carbohydrates and proteinaceous substrates and performing anaerobic respiration with nitrite. In the deep subsurface aquifer Aminicenantes probably act as destructors of buried organic matter and produce hydrogen and acetate. Based on phylogenetic and genomic analyses, the novel bacterium is proposed to be classified as Candidatus Saccharicenans subterraneum.


Bacteria, Anaerobic/genetics , Genome, Bacterial , Gram-Negative Bacteria/genetics , Groundwater/microbiology , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/metabolism , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/metabolism , Phylogeny , Sugars/metabolism
...