Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biophotonics ; 14(4): e202000453, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33423394

RESUMEN

The current method for determining the sun protection factor (SPF) requires erythema formation. Noninvasive alternatives have recently been suggested by several groups. Our group previously developed a functional sensor based on diffuse reflectance measurements with one UVB LED, which was previously evaluated on pig ear skin. Here we present the results of a systematic in vivo study using 12 sunscreens on 10 volunteers (skin types [ST] I-III). The relationship of the UVB-LED reflectance of unprotected skin and melanin index was determined for each ST. The spatial variation of the reflectance signal of different positions was analyzed and seems to be mainly influenced by sample inhomogeneity except for high-protection factors (PFs) where signal levels are close to detection noise. Despite the low-signal levels, a correlation of the measured LED-based UVB PF with SPF reference values from test institutes with R2 = 0.57 is obtained, suggesting a strong relationship of SPF and LED-based UVB-PF. Measured PFs tend to be lower for increasing skin pigmentation. The sensor design seems to be suitable for investigations where a fast measurement of relative changes of PFs, such as due to inhomogeneous application, bathing and sweating, is of interest.


Asunto(s)
Protectores Solares , Rayos Ultravioleta , Animales , Piel , Pigmentación de la Piel , Factor de Protección Solar , Porcinos
2.
J Biophotonics ; 14(2): e202000348, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33025740

RESUMEN

The sun protection factor (SPF) values are currently determined using an invasive procedure, in which the volunteers are irradiated with ultraviolet (UV) light. Non-invasive approaches based on hybrid diffuse reflectance spectroscopy (HDRS) have shown a good correlation with conventional SPF testing. Here, we present a novel compact and adjustable DRS test system. The in vivo measurements were performed using a multi-lambda-LED light source and an 84-channel imaging spectrograph with a fiber optic probe for detection. A transmission spectrum was calculated based on the reflectance measured with sunscreen and the reflectance measured without sunscreen. The preexposure in vitro spectrum was fitted to the in vivo spectrum. Each of the 11 test products was investigated on 10 volunteers. The SPF and UVA-PF values obtained by this new approach were compared with in vivo SPF results determined by certified test institutes. A correlation coefficient R2 = 0.86 for SPF, and R2 = 0.92 for UVA-PF were calculated. Having examined various approaches to apply the HDRS principle, the method we present was found to produce valid and reproducible results, suggesting that the multi-lambda-LED device is suitable for in-vivo SPF testing based on the HDRS principle as well as for in-vivo UVA-PF measurements.


Asunto(s)
Factor de Protección Solar , Protectores Solares , Humanos , Análisis Espectral , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...