Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Proc Natl Acad Sci U S A ; 121(20): e2400610121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38713623

Chromatin replication is intricately intertwined with the recycling of parental histones to the newly duplicated DNA strands for faithful genetic and epigenetic inheritance. The transfer of parental histones occurs through two distinct pathways: leading strand deposition, mediated by the DNA polymerase ε subunits Dpb3/Dpb4, and lagging strand deposition, facilitated by the MCM helicase subunit Mcm2. However, the mechanism of the facilitation of Mcm2 transferring parental histones to the lagging strand while moving along the leading strand remains unclear. Here, we show that the deletion of Pol32, a nonessential subunit of major lagging-strand DNA polymerase δ, results in a predominant transfer of parental histone H3-H4 to the leading strand during replication. Biochemical analyses further demonstrate that Pol32 can bind histone H3-H4 both in vivo and in vitro. The interaction of Pol32 with parental histone H3-H4 is disrupted through the mutation of the histone H3-H4 binding domain within Mcm2. Our findings identify the DNA polymerase δ subunit Pol32 as a critical histone chaperone downstream of Mcm2, mediating the transfer of parental histones to the lagging strand during DNA replication.


DNA Polymerase III , DNA Replication , Histones , Histones/metabolism , DNA Polymerase III/metabolism , DNA Polymerase III/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Complex Component 2/genetics , Protein Binding
3.
Nucleic Acids Res ; 52(9): 5138-5151, 2024 May 22.
Article En | MEDLINE | ID: mdl-38554108

Recycling of parental histones is an important step in epigenetic inheritance. During DNA replication, DNA polymerase epsilon subunit DPB3/DPB4 and DNA replication helicase subunit MCM2 are involved in the transfer of parental histones to the leading and lagging strands, respectively. Single Dpb3 deletion (dpb3Δ) or Mcm2 mutation (mcm2-3A), which each disrupts one parental histone transfer pathway, leads to the other's predominance. However, the biological impact of the two histone transfer pathways on chromatin structure and DNA repair remains elusive. In this study, we used budding yeast Saccharomyces cerevisiae to determine the genetic and epigenetic outcomes from disruption of parental histone H3-H4 tetramer transfer. We found that a dpb3Δ mcm2-3A double mutant did not exhibit the asymmetric parental histone patterns caused by a single dpb3Δ or mcm2-3A mutation, suggesting that the processes by which parental histones are transferred to the leading and lagging strands are independent. Surprisingly, the frequency of homologous recombination was significantly lower in dpb3Δ, mcm2-3A and dpb3Δ mcm2-3A mutants, likely due to the elevated levels of free histones detected in the mutant cells. Together, these findings indicate that proper transfer of parental histones during DNA replication is essential for maintaining chromatin structure and that lower homologous recombination activity due to parental histone transfer defects is detrimental to cells.


DNA Replication , Histones , Homologous Recombination , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Histones/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Homologous Recombination/genetics , DNA Replication/genetics , Mutation , Chromatin/metabolism , Chromatin/genetics , DNA Polymerase II/metabolism , DNA Polymerase II/genetics , Epigenesis, Genetic , DNA Repair
4.
Res Sq ; 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38352584

Background . Human hexokinase 2 ( HK2 ) plays an important role in regulating Warburg effect, which metabolizes glucose to lactate acid even in the presence of ample oxygen and provides intermediate metabolites to support cancer cell proliferation and tumor growth. HK2 overexpression has been observed in various types of cancers and targeting HK2 -driven Warburg effect has been suggested as a potential cancer therapeutic strategy. Given that epigenetic enzymes utilize metabolic intermediates as substrates or co-factors to carry out post-translational modification of DNA and histones in cells, we hypothesized that altering HK2 expression-mediated cellular glycolysis rates could impact the epigenome and, consequently, genome stability in yeast. To test this hypothesis, we established genetic models with different yeast hexokinase 2 ( HXK2) expression in Saccharomyces cerevisiae yeast cells and investigated the effect of HXK2 -dependent metabolism on parental nucleosome transfer, a key DNA replication-coupled epigenetic inheritance process, and chromatin stability. Results . By comparing the growth of mutant yeast cells carrying single deletion of hxk1Δ , hxk2Δ , or double-loss of hxk1Δ hxk2Δ to wild-type cells, we demonstrated that HXK2 is the dominant HXK in yeast cell growth. Surprisingly, manipulating HXK2 expression in yeast, whether through overexpression or deletion, had only a marginal impact on parental nucleosome assembly, but a noticeable trend with decrease chromatin instability. However, targeting yeast cells with 2-deoxy-D-glucose (2-DG), a HK2 inhibitor that has been proposed as an anti-cancer treatment, significantly increased chromatin instability. Conclusion . Our findings suggest that in yeast cells lacking HXK2 , alternative HXK s such as HXK1 or glucokinase 1 ( GLK1 ) play a role in supporting glycolysis at a level that adequately maintain epigenomic stability. While our study demonstrated an increase in epigenetic instability with 2-DG treatment, the observed effect seemed to occur independently of Hxk2-mediated glycolysis inhibition. Thus, additional research is needed to identify the molecular mechanism through which 2-DG influences chromatin stability.

5.
bioRxiv ; 2023 Jan 11.
Article En | MEDLINE | ID: mdl-36711718

Recycling of parental histones is an important step in epigenetic inheritance. During DNA replication, DNA polymerase epsilon subunit DPB3/DPB4 and DNA replication helicase subunit MCM2 are involved in the transfer of parental histones to the leading and lagging DNA strands, respectively. Single Dpb3 deletion ( dpb3Δ ) or Mcm2 mutation ( mcm2-3A ), which each disrupt one parental histone transfer pathway, leads to the other's predominance. However, the impact of the two histone transfer pathways on chromatin structure and DNA repair remains elusive. In this study, we used budding yeast Saccharomyces cerevisiae to determine the genetic and epigenetic outcomes from disruption of parental histone H3-H4 tetramer transfer. We found that a dpb3Δ / mcm2-3A double mutant did not exhibit the single dpb3Δ and mcm2-3A mutants' asymmetric parental histone patterns, suggesting that the processes by which parental histones are transferred to the leading and lagging strands are independent. Surprisingly, the frequency of homologous recombination was significantly lower in dpb3Δ, mcm2-3A , and dpb3Δ / mcm2-3A mutants relative to the wild-type strain, likely due to the elevated levels of free histones detected in the mutant cells. Together, these findings indicate that proper transfer of parental histones to the leading and lagging strands during DNA replication is essential for maintaining chromatin structure and that high levels of free histones due to parental histone transfer defects are detrimental to cells.

6.
Ageing Res Rev ; 63: 101168, 2020 11.
Article En | MEDLINE | ID: mdl-32896666

Mitochondrial dysfunction is one of the hallmarks of aging. Consistently mitochondrial DNA (mtDNA) copy number and function decline with age in various tissues. There is increasing evidence to support that mitochondrial dysfunction drives ovarian aging. A decreased mtDNA copy number is also reported during ovarian aging. However, the mitochondrial mechanisms contributing to ovarian aging and infertility are not fully understood. Additionally, investigations into mitochondrial therapies to rejuvenate oocyte quality, select viable embryos and improve mitochondrial function may help enhance fertility or extend reproductive longevity in the future. These therapies include the use of mitochondrial replacement techniques, quantification of mtDNA copy number, and various pharmacologic and lifestyle measures. This review aims to describe the key evidence and current knowledge of the role of mitochondria in ovarian aging and identify the emerging potential options for therapy to extend reproductive longevity and improve fertility.


Longevity , Mitochondria , Aging/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Mitochondria/genetics , Oocytes/metabolism
7.
Mitochondrion ; 46: 140-148, 2019 05.
Article En | MEDLINE | ID: mdl-29649582

Perturbations in mitochondrial redox levels oxidize nucleotide exchanger Mge1, compromising its ability to bind to the Hsp70, while the Mxr2 enzyme reduces the oxidized Mge1. However, the effects of persistent oxidative stress on Mge1 structure and function are not known. In this study, we show that oxidation-induced selective and local structural adaptations cause the detachment of Mge1 from Hsp70. Notably, persistent oxidative stress causes monomeric Mge1 to aggregate and to generate amyloid-type particles. Mxr2 appears to protect Mge1 from oxidative stress induced aggregation. We conclude that the Mxr2-Mge1-Hsp70 protein triad is finely regulated through structural alterations of Mge1 mediated by redox levels.


Adaptation, Biological , HSP70 Heat-Shock Proteins/metabolism , Methionine Sulfoxide Reductases/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Molecular Chaperones/metabolism , Oxidative Stress , Protein Folding , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , HSP70 Heat-Shock Proteins/genetics , Methionine Sulfoxide Reductases/genetics , Mitochondrial Membrane Transport Proteins/genetics , Molecular Chaperones/genetics , Oxidation-Reduction , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
8.
Sci Rep ; 8(1): 2716, 2018 02 09.
Article En | MEDLINE | ID: mdl-29426933

Cells across evolution employ reversible oxidative modification of methionine and cysteine amino acids within proteins to regulate responses to redox stress. Previously we have shown that mitochondrial localized methionine sulfoxide reductase (Mxr2) reversibly regulates oxidized yeast Mge1 (yMge1), a co-chaperone of Hsp70/Ssc1 to maintain protein homeostasis during oxidative stress. However, the specificity and the conservation of the reversible methionine oxidation mechanism in higher eukaryotes is debatable as human GrpEL1 (hGrpEL1) unlike its homolog yMge1 harbors two methionine residues and multiple cysteines besides the mammalian mitochondria hosting R and S types of Mxrs/Msrs. In this study, using yeast as a surrogate system, we show that hGRPEL1 and R type MSRs but not the S type MSRs complement the deletion of yeast MGE1 or MXR2 respectively. Our investigations show that R type Msrs interact selectively with oxidized hGrpEL1/yMge1 in an oxidative stress dependent manner, reduce the conserved hGrpEL1-Met146-SO and rescue the Hsp70 ATPase activity. In addition, a single point mutation in hGrpEL1-M146L rescues the slow growth phenotype of yeast MXR2 deletion under oxidative duress. Our study illustrates the evolutionarily conserved formation of specific Met-R-SO in hGrpEL1/yMge1 and the essential and canonical role of R type Msrs/Mxrs in mitochondrial redox mechanism.


Ferredoxin-NADP Reductase/metabolism , HSP70 Heat-Shock Proteins/metabolism , Methionine Sulfoxide Reductases/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cysteine/metabolism , Ferredoxin-NADP Reductase/genetics , Genetic Complementation Test , HSP70 Heat-Shock Proteins/genetics , Humans , Methionine/metabolism , Methionine Sulfoxide Reductases/genetics , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/genetics , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Mutant Proteins/genetics , Mutant Proteins/metabolism , Oxidation-Reduction , Oxidative Stress , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
9.
Biochemistry ; 55(51): 7065-7072, 2016 12 27.
Article En | MEDLINE | ID: mdl-27977164

Mge1, a yeast homologue of Escherichia coli GrpE, is an evolutionarily conserved homodimeric nucleotide exchange factor of mitochondrial Hsp70. Temperature-dependent reversible structural alteration from a dimeric to a monomeric form is critical for Mge1 to act as a thermosensor. However, very limited information about the structural component or amino acid residue(s) that contributes to thermal sensing of Mge1/GrpE is available. In this report, we have identified a single point mutation, His167 to Leu (H167L), within the hinge region of Mge1 that confers thermal resistance to yeast. Circular dichroism, cross-linking, and refolding studies with recombinant proteins show that the Mge1 H167L mutant has increased thermal stability compared to that of wild-type Mge1 and also augments Hsp70-mediated protein refolding activity. While thermal denaturation studies suggest flexibility in the mutant, ionic quenching studies and limited proteolysis analysis reveal a relatively more rigid structure compared to that of the wild type. Intriguingly, Thermus thermophilus GrpE has a leucine at the corresponding position akin to the Mge1 mutant, and thermophilus proteins are well-known for their rigidity and hydrophobicity. Taken together, our results show that the yeast Mge1 H167L mutant functionally and structurally mimics T. thermophilus GrpE.


HSP70 Heat-Shock Proteins/genetics , Hot Temperature , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Proteins/genetics , Molecular Chaperones/genetics , Point Mutation , Saccharomyces cerevisiae Proteins/genetics , Amino Acid Sequence , Circular Dichroism , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Protein Denaturation , Protein Domains , Protein Folding , Protein Multimerization , Protein Stability , Protein Unfolding , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid
10.
Mol Biol Cell ; 26(3): 406-19, 2015 Feb 01.
Article En | MEDLINE | ID: mdl-25428986

Peptide methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in protein(s). Although these reductases have been implicated in several human diseases, there is a dearth of information on the identity of their physiological substrates. By using Saccharomyces cerevisiae as a model, we show that of the two methionine sulfoxide reductases (MXR1, MXR2), deletion of mitochondrial MXR2 renders yeast cells more sensitive to oxidative stress than the cytosolic MXR1. Our earlier studies showed that Mge1, an evolutionarily conserved nucleotide exchange factor of Hsp70, acts as an oxidative sensor to regulate mitochondrial Hsp70. In the present study, we show that Mxr2 regulates Mge1 by selectively reducing MetO at position 155 and restores the activity of Mge1 both in vitro and in vivo. Mge1 M155L mutant rescues the slow-growth phenotype and aggregation of proteins of mxr2Δ strain during oxidative stress. By identifying the first mitochondrial substrate for Mxrs, we add a new paradigm to the regulation of the oxidative stress response pathway.


HSP70 Heat-Shock Proteins/metabolism , Methionine Sulfoxide Reductases/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Molecular Chaperones/metabolism , Oxidative Stress , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Methionine/metabolism , Mutant Proteins , Oxidation-Reduction , Oxidoreductases
11.
Mol Vis ; 19: 1231-7, 2013.
Article En | MEDLINE | ID: mdl-23761725

PURPOSE: To analyze the protein structural features responsible for the aggregation properties of the mutant protein D26G human γS-crystallin (HGSC) associated with congenital Coppock-type cataract. METHODS: cDNAs of wild-type (WT) and D26G mutant HGSC were cloned and expressed in BL21 (DE3) pLysS cells and the proteins isolated and purified. Their secondary and tertiary structural features, aggregation tendencies, and structural stabilities were compared using spectroscopic (circular dichroism, intrinsic and extrinsic fluorescence), molecular modeling, and dynamics methods. RESULTS: No difference was observed between the conformational (secondary and tertiary structural) features and aggregation properties between the WT and D26G proteins. The mutant, however, was structurally less stable; it denatured at a slightly lower concentration of the added chemical denaturant (at 2.05 M guanidinium chloride, cf. 2.20 M for the WT) and at a slightly lower temperature (at 70.8 °C, cf. 72.0 °C for the WT). The mutant also self-aggregated more readily (it turned turbid upon standing; at 65 °C, it started precipitating beyond 200 s, while the WT did not, even after 900 s). Molecular modeling showed that the Asp26-Arg84 contact (and the related Arg84-Asn54 interaction) was disturbed in the mutant, making the latter less compact around the mutation site. CONCLUSIONS: The cataract-associated mutant D26G of HGSC is remarkably close to the WT molecule in structural features, with only a microenvironmental change in the packing around the mutation site. This alteration appears sufficient to promote self-aggregation, resulting in peripheral cataract.


Amino Acid Substitution/genetics , Cataract/congenital , Mutant Proteins/chemistry , gamma-Crystallins/chemistry , gamma-Crystallins/genetics , Cataract/genetics , Circular Dichroism , Humans , Models, Molecular , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary
...