Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Biochim Biophys Acta Biomembr ; 1865(8): 184200, 2023 12.
Article En | MEDLINE | ID: mdl-37517559

Herpes simplex virus 1 (HSV-1) is a well-studied herpesvirus that causes various human diseases. Like other herpesviruses, HSV-1 produces the transmembrane glycoprotein N (gN/UL49.5 protein), which has been extensively studied, but its function in HSV-1 remains largely unknown. The amino-acid sequences and lengths of UL49.5 proteins differ between herpesvirus species. It is, therefore, crucial to determine whether and to what extent the spatial structure of UL49.5 orthologs that are transporter associated with antigen processing (TAP) inhibitors (i.e., of bovine herpesvirus 1; BoHV-1) differ from that of non-TAP inhibitors (i.e., of HSV-1). Our study aimed to examine the 3D structure of the HSV-1-encoded UL49.5 protein in an advanced model of the endoplasmic reticulum (ER) membrane using circular dichroism, 2D nuclear magnetic resonance, and multiple-microsecond all-atom molecular dynamics simulations in an ER membrane mimetic environment. According to our findings, the N-terminus of the HSV-1-encoded UL49.5 adopts a highly flexible, unordered structure in the extracellular part due to the presence of a large number of proline and glycine residues. In contrast to the BoHV-1-encoded homolog, the transmembrane region of the HSV-1-encoded UL49.5 is formed by a single long transmembrane α-helix, rather than two helices oriented perpendicularly, while the cytoplasmic part of the protein (C-terminus) has a short unordered structure. Our findings provide valuable experimental structural information on the HSV-1-encoded UL49.5 protein and offer, based on the obtained structure, insight into its lack of biological activity in inhibiting the TAP-dependent antigen presentation pathway.


Herpes Simplex , Herpesviridae , Herpesvirus 1, Human , Humans , Antigen Presentation , Herpesvirus 1, Human/metabolism , Viral Envelope Proteins/chemistry , Membrane Transport Proteins/metabolism , Herpesviridae/metabolism
2.
J Biomed Mater Res B Appl Biomater ; 111(10): 1800-1812, 2023 10.
Article En | MEDLINE | ID: mdl-37255007

Metallic materials for long-term load-bearing implants still do not provide high antimicrobial activity while maintaining strong compatibility with bone cells. This study aimed to modify the surface of Ti13Nb13Zr alloy by electrophoretic deposition of a chitosan coating with a covalently attached Arg-Gly-Asp (RGD) peptide. The suspensions for coating deposition were prepared in two different ways either using hydroxyacetic acid or a carbon dioxide saturation process. The coatings were deposited using a voltage of 10 V for 1 min. The prepared coatings were examined using SEM, EDS, FTIR, and XPS techniques. In addition, the wettability of these surfaces, corrosion resistance, adhesion of the coatings to the metallic substrate, and their antimicrobial activity (E. coli, S. aureus) and cytocompatibility properties using the MTT and LDH assays were studied. The coatings produced tightly covered the metallic substrate. Spectroscopic studies confirmed that the peptide did not detach from the chitosan chain during electrophoretic deposition. All tested samples showed high corrosion resistance (corrosion current density measured in nA/cm2 ). The deposited coatings contributed to a significant increase in the antimicrobial activity of the samples against Gram-positive and Gram-negative bacteria (reduction in bacterial counts from 99% to, for CS-RGD-Acid and the S. aureus strain, total killing capacity). MTT and LDH results showed high compatibility with bone cells of the modified surfaces compared to the bare substrate (survival rates above 75% under indirect contact conditions and above 100% under direct contact conditions). However, the adhesion of the coatings was considered weak.


Chitosan , Chitosan/pharmacology , Chitosan/chemistry , Staphylococcus aureus , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Anti-Bacterial Agents/pharmacology , Alloys/pharmacology , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Oligopeptides/pharmacology , Suspensions , Osteoblasts , Titanium/chemistry
3.
J Mol Biol ; 435(5): 167964, 2023 03 01.
Article En | MEDLINE | ID: mdl-36646375

Due to unique features, proline residues may control protein structure and function. Here, we investigated the role of 52PPQ54 residues, indicated by the recently established experimental 3D structure of bovine herpesvirus 1-encoded UL49.5 protein as forming a characteristic proline hinge motif in its N-terminal domain. UL49.5 acts as a potent inhibitor of the transporter associated with antigen processing (TAP), which alters the antiviral immune response. Mechanisms employed by UL49.5 to affect TAP remain undetermined on a molecular level. We found that mutations in the 52PPQ54 region had a vast impact on its immunomodulatory function, increasing cell surface MHC class I expression, TAP levels, and peptide transport efficiency. This inhibitory effect was specific for UL49.5 activity towards TAP but not towards the viral glycoprotein M. To get an insight into the impact of proline hinge modifications on structure and dynamics, we performed all-atom and coarse-grained molecular dynamics studies on the native protein and PPQ mutants. The results demonstrated that the proline hinge sequence with its highly rigid conformation served as an anchor into the membrane. This anchor was responsible for the structural and dynamical behavior of the whole protein, constraining the mobility of the C-terminus, increasing the mobility of the transmembrane region, and controlling the accessibility of the C-terminal residues to the cytoplasmic environment. Those features appear crucial for TAP binding and inhibition. Our findings significantly advance the structural understanding of the UL49.5 protein and its functional regions and support the importance of proline motifs for the protein structure.


Antigen Presentation , Herpesvirus 1, Bovine , Proline , Herpesvirus 1, Bovine/immunology , Membrane Transport Proteins/metabolism , Proline/chemistry , Proline/genetics , Amino Acid Motifs , Protein Transport
4.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article En | MEDLINE | ID: mdl-36430791

Synthetic implants are used to treat large bone defects that are often unable to regenerate, for example those caused by osteoporosis. It is necessary that the materials used to manufacture them are biocompatible and resorbable. Polymer-ceramic composites, such as those based on poly(L-lactide) (PLLA) and calcium phosphate ceramics (Ca-P), are often used for these purposes. In this study, we attempted to investigate an innovative strategy for two-step (dual) modification of composites and their components to improve the compatibility of composite components and the adhesion between PLA and Ca-P whiskers, and to increase the mechanical strength of the composite, as well as improve osteological bioactivity and prevent bone resorption in composites intended for bone regeneration. In the first step, Ca-P whiskers were modified with a saturated fatty acid namely, lauric acid (LA), or a silane coupling agent γ-aminopropyltriethoxysilane (APTES). Then, the composite, characterized by the best mechanical properties, was modified in the second stage of the work with an active chemical compound used in medicine as a first-line drug in osteoporosis-sodium alendronate, belonging to the group of bisphosphonates (BP). As a result of the research covered in this work, the composite modified with APTES and alendronate was found to be a promising candidate for future biomedical engineering applications.


Osteoporosis , Silanes , Humans , Alendronate/pharmacology , Porosity , Polyesters/chemistry , Osteoblasts
5.
Toxics ; 10(1)2022 Jan 06.
Article En | MEDLINE | ID: mdl-35051062

Assessing the toxicity of new biomaterials dedicated to bone regeneration can be difficult. Many reports focus only on a single toxicity parameter, which may be insufficient for a detailed evaluation of the new material. Moreover, published data frequently do not include control cells exposed to the environment without composite or its extract. Here we present the results of two assays used in the toxicological assessment of materials' extracts (the integrity of the cellular membrane and the mitochondrial activity/proliferation), and the influence of different types of controls used on the obtained results. Results obtained in the cellular membrane integrity assay showed a lack of toxic effects of all tested extracts, and no statistical differences between them were present. Control cells, cells incubated with chitosan extract or chitosan-bioglass extract were used as a reference in proliferation calculations to highlight the impact of controls used on the result of the experiment. The use of different baseline controls caused variability between obtained proliferation results, and influenced the outcome of statistical analysis. Our findings confirm the thesis that the type of control used in an experiment can change the final results, and it may affect the toxicological assessment of biomaterial.

6.
Int J Mol Sci ; 22(24)2021 Dec 18.
Article En | MEDLINE | ID: mdl-34948389

In this research, we describe the properties of three-component composite foam scaffolds based on poly(ε-caprolactone) (PCL) as a matrix and hydroxyapatite whiskers (HAP) and L-Lysine as fillers (PCL/HAP/Lys with wt% ratio 50/48/2). The scaffolds were prepared using a thermally induced phase separation technique supported by salt leaching (TIPS-SL). All materials were precisely characterized: porosity, density, water uptake, wettability, DSC, and TGA measurements and compression tests were carried out. The microstructure of the obtained scaffolds was analyzed via SEM. It was found that the PCL/HAP/Lys scaffold has a 45% higher Young's modulus and better wettability compared to the PCL/HAP system. At the same time, the porosity of the system was ~90%. The osteoblast hFOB 1.19 cell response was also investigated in osteogenic conditions (39 °C) and the cytokine release profile of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α was determined. Modification of PCL scaffolds with HAP and L-Lysine significantly improved the proliferation of pre-osteoblasts cultured on such materials.


Biocompatible Materials/chemistry , Durapatite/chemistry , Lysine/analogs & derivatives , Osteoblasts/cytology , Polyesters/chemistry , Tissue Scaffolds/chemistry , Bone Regeneration , Cell Adhesion , Cell Line , Cell Proliferation , Humans , Tissue Engineering/methods
7.
Chem Biodivers ; 18(2): e2000883, 2021 Feb.
Article En | MEDLINE | ID: mdl-33427369

Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV-1-encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N-terminal fragment interacts with the loops of the TAP complex, and the C-terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9-11) motif, within the helical structure of the UL49.5 N-terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N-terminal fragment. The introduced RRE(9-11) variations were designed to abolish or stabilize the structure of the α-helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane-mimetic or membrane-model environments. Our structural results show that in the RRE(9-11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9-11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.


Herpesviridae Infections/virology , Herpesvirus 1, Bovine/chemistry , Infectious Bovine Rhinotracheitis/virology , Viral Envelope Proteins/chemistry , Amino Acid Motifs , Animals , Cattle , Humans , Models, Molecular , Peptide Fragments/chemistry , Protein Conformation , Protein Stability
8.
Molecules ; 25(12)2020 Jun 23.
Article En | MEDLINE | ID: mdl-32585846

Regeneration and wound healing are vital to tissue homeostasis and organism survival. One of the biggest challenges of today's science and medicine is finding methods and factors to stimulate these processes in the human body. Effective solutions to promote regenerative responses will accelerate advances in tissue engineering, regenerative medicine, transplantology, and a number of other clinical specialties. In this study, we assessed the potential efficacy of a synthetic hexapeptide, RDKVYR, for the stimulation of tissue repair and wound healing. The hexapeptide is marketed under the name "Imunofan" (IM) as an immunostimulant. IM displayed stability in aqueous solutions, while in plasma it was rapidly bound by albumins. Structural analyses demonstrated the conformational flexibility of the peptide. Tests in human fibroblast and keratinocyte cell lines showed that IM exerted a statistically significant (p < 0.05) pro-proliferative activity (30-40% and 20-50% increase in proliferation of fibroblast and keratinocytes, respectively), revealed no cytotoxicity over a vast range of concentrations (p < 0.05), and had no allergic properties. IM was found to induce significant transcriptional responses, such as enhanced activity of genes involved in active DNA demethylation (p < 0.05) in fibroblasts and activation of genes involved in immune responses, migration, and chemotaxis in adipose-derived stem cells derived from surgery donors. Experiments in a model of ear pinna injury in mice indicated that IM moderately promoted tissue repair (8% in BALB/c and 36% in C57BL/6 in comparison to control).


Cell Proliferation/drug effects , Oligopeptides/pharmacology , Skin/pathology , Wound Healing , Albumins/metabolism , Animals , Basophils/drug effects , Cell Death/drug effects , Cell Line , Chemotaxis/drug effects , Cytokines/metabolism , DNA Methylation/drug effects , Ear/pathology , Fibroblasts/cytology , Fibroblasts/drug effects , HaCaT Cells/cytology , HaCaT Cells/drug effects , Humans , Injections, Subcutaneous , Mice, Inbred BALB C , Mice, Inbred C57BL , Oligopeptides/blood , Oligopeptides/chemistry , Oligopeptides/metabolism , Protein Stability/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Transcription, Genetic/drug effects
9.
Molecules ; 25(3)2020 Jan 29.
Article En | MEDLINE | ID: mdl-32013172

It is recognized that interactions between most materials are governed by their surface properties and manifest themselves at the interface formed between them. To gain more insight into this thin layer, several methods have been deployed. Among them, spectroscopic methods have been thoroughly evaluated. Due to their exceptional sensitivity, data acquisition speed, and broad material tolerance they have been proven to be invaluable tools for surface analysis, used by scientists in many fields, for example, implant studies. Today, in modern medicine the use of implants is considered standard practice. The past two decades of constant development has established the importance of implants in dentistry, orthopedics, as well as extended their applications to other areas such as aesthetic medicine. Fundamental to the success of implants is the knowledge of the biological processes involved in interactions between an implant and its host tissue, which are directly connected to the type of implant material and its surface properties. This review aims to demonstrate the broad applications of spectroscopic methods in implant material studies, particularly discussing hard implants, surface composition studies, and surface-cell interactions.


Biocompatible Materials/analysis , Prostheses and Implants , Spectrum Analysis , Humans , Materials Testing , Metal Ceramic Alloys/analysis , Metal Ceramic Alloys/chemistry , Microscopy, Electron, Scanning , Spectrum Analysis/methods , Steel/analysis , Steel/chemistry , Surface Properties , Titanium/analysis , Titanium/chemistry
10.
Biochim Biophys Acta Biomembr ; 1861(5): 926-938, 2019 05 01.
Article En | MEDLINE | ID: mdl-30772281

The transporter associated with antigen processing (TAP) directly participates in the immune response as a key component of the cytosolic peptide to major histocompatibility complex (MHC) class I protein loading machinery. This makes TAP an important target for viruses avoiding recognition by CD8+ T lymphocytes. Its activity can be suppressed by the UL49.5 protein produced by bovine herpesvirus 1, although the mechanism of this inhibition has not been understood so far. Therefore, the main goal of our study was to investigate the 3D structure of bovine herpesvirus 1 - encoded UL49.5 protein. The final structure of the inhibitor was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane mimetic environments. In NMR studies, UL49.5 was represented by two fragments: the extracellular region (residues 1-35) and the transmembrane-intracellular fragment (residues 36-75), displaying various functions during viral invasion. After the empirical structure determination, a molecular docking procedure was used to predict the complex of UL49.5 with the TAP heterodimer. Our results revealed that UL49.5 adopted a highly flexible membrane-proximal helical structure in the extracellular part. In the transmembrane region, we observed two short α-helices. Furthermore, the cytoplasmic part had an unordered structure. Finally, we propose three different orientations of UL49.5 in the complex with TAP. Our studies provide, for the first time, the experimental structural information on UL49.5 and structure-based insight in its mechanism of action which might be helpful in designing new drugs against viral infections.


Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Viral Envelope Proteins/analysis , Viral Proteins/analysis , Animals , Cattle , Protein Conformation , Viral Envelope Proteins/chemical synthesis , Viral Envelope Proteins/isolation & purification , Viral Proteins/chemical synthesis , Viral Proteins/isolation & purification
11.
J Mol Recognit ; 28(7): 413-26, 2015 Jul.
Article En | MEDLINE | ID: mdl-25736604

Serum amyloid A (SAA) is a multifunctional acute-phase protein whose concentration in serum increases markedly following a number of chronic inflammatory and neoplastic diseases. Prolonged high SAA level may give rise to reactive systemic amyloid A (AA) amyloidosis, where the N-terminal segment of SAA is deposited as amyloid fibrils. Besides, recently, well-documented association of SAA with high-density lipoprotein or glycosaminoglycans, in particular heparin/heparin sulfate (HS), and specific interaction between SAA and human cystatin C (hCC), the ubiquitous inhibitor of cysteine proteases, was proved. Using a combination of selective proteolytic excision and high-resolution mass spectrometry, a hCC binding site in the SAA sequence was determined as SAA(86-104). The role of this SAA C-terminal fragment as a ligand-binding locus is still not clear. It was postulated important in native SAA folding and in pathogenesis of AA amyloidosis. In the search of conformational details of this SAA fragment, we did its structure and affinity studies, including its selected double/triple Pro → Ala variants. Our results clearly show that the SAA(86-104) 19-peptide has rather unordered structure with bends in its C-terminal part, which is consistent with the previous results relating to the whole protein. The results of affinity chromatography, fluorescent ELISA-like test, CD and NMR studies point to an importance of proline residues on structure of SAA(86-104). Conformational details of SAA fragment, responsible for hCC binding, may help to understand the objective of hCC-SAA complex formation and its importance for pathogenesis of reactive amyloid A amyloidosis.


Cystatin C/chemistry , Peptides/chemistry , Serum Amyloid A Protein/chemistry , Alanine/chemistry , Calorimetry, Differential Scanning , Chromatography, Affinity , Circular Dichroism , Cystatin C/metabolism , Humans , Peptides/metabolism , Proline/chemistry , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Structure, Tertiary , Serum Amyloid A Protein/metabolism
...