Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Leukemia ; 37(7): 1454-1463, 2023 07.
Article En | MEDLINE | ID: mdl-37169950

Chronic lymphocytic leukaemia (CLL) cells can express unmutated (U-CLL) or mutated (M-CLL) immunoglobulin heavy chain (IGHV) genes with differing clinical behaviours, variable B cell receptor (BCR) signalling capacity and distinct transcriptional profiles. As it remains unclear how these differences reflect the tumour cells' innate pre/post germinal centre origin or their BCR signalling competence, we applied mRNA/miRNA sequencing to 38 CLL cases categorised into three subsets by IGHV mutational status and BCR signalling capacity. We identified 492 mRNAs and 38 miRNAs differentially expressed between U-CLL and M-CLL, but only 9 mRNAs and 0 miRNAs associated with BCR competence within M-CLL. Of the IGHV-associated miRNAs, (14/38 (37%)) derived from chr14q32 clusters where all miRNAs were co-expressed with the MEG3 lncRNA from a cancer associated imprinted locus. Integrative analysis of miRNA/mRNA data revealed pronounced regulatory potential for the 14q32 miRNAs, potentially accounting for up to 25% of the IGHV-related transcriptome signature. GAB1, a positive regulator of BCR signalling, was potentially regulated by five 14q32 miRNAs and we confirmed that two of these (miR-409-3p and miR-411-3p) significantly repressed activity of the GAB1 3'UTR. Our analysis demonstrates a potential key role of the 14q32 miRNA locus in the regulation of CLL-related gene regulation.


Leukemia, Lymphocytic, Chronic, B-Cell , MicroRNAs , Humans , Immunoglobulin Heavy Chains/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , MicroRNAs/genetics , Mutation , RNA, Messenger/genetics
2.
Clin Cancer Res ; 27(20): 5647-5659, 2021 10 15.
Article En | MEDLINE | ID: mdl-34380642

PURPOSE: B-cell receptor (BCR) signaling is critical for the pathogenesis of chronic lymphocytic leukemia (CLL), promoting both malignant cell survival and disease progression. Although vital, understanding of the wider signaling network associated with malignant BCR stimulation is poor. This is relevant with respect to potential changes in response to therapy, particularly involving kinase inhibitors. In the current study, we describe a novel high-resolution approach to investigate BCR signaling in primary CLL cells and track the influence of therapy on signaling response. EXPERIMENTAL DESIGN: A kinobead/mass spectrometry-based protocol was used to study BCR signaling in primary CLL cells. Longitudinal analysis of samples donated by clinical trial patients was used to investigate the impact of chemoimmunotherapy and ibrutinib on signaling following surface IgM engagement. Complementary Nanostring and immunoblotting analysis was used to verify our findings. RESULTS: Our protocol isolated a unique, patient-specific signature of over 30 kinases from BCR-stimulated CLL cells. This signature was associated with 13 distinct Kyoto Encyclopedia of Genes and Genomes pathways and showed significant change in cells from treatment-naïve patients compared with those from patients who had previously undergone therapy. This change was validated by longitudinal analysis of clinical trials samples where BCR-induced kinome responses in CLL cells altered between baseline and disease progression in patients failing chemoimmunotherapy and between baseline and treatment in patients taking ibrutinib. CONCLUSIONS: These data comprise the first comprehensive proteomic investigation of the BCR signaling response within CLL cells and reveal unique evidence that these cells undergo adaptive reprogramming of this signaling in response to therapy.


B-Lymphocytes/physiology , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Signal Transduction/physiology , Cytological Techniques/methods , Humans , Microspheres , Protein Kinase Inhibitors , Tumor Cells, Cultured
4.
Clin Cancer Res ; 26(7): 1700-1711, 2020 04 01.
Article En | MEDLINE | ID: mdl-31831562

PURPOSE: PI3K signaling is a common feature of B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL), and PI3K inhibitors have been introduced into the clinic. However, there remains a clear need to develop new strategies to target PI3K signaling. PI3K activity is countered by Src homology domain 2-containing inositol-5'-phosphatase 1 (SHIP1) and, here, we have characterized the activity of a novel SHIP1 activator, AQX-435, in preclinical models of B-cell malignancies. EXPERIMENTAL DESIGN: In vitro activity of AQX-435 was evaluated using primary CLL cells and DLBCL-derived cell lines. In vivo activity of AQX-435, alone or in combination with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, was assessed using DLBCL cell line and patient-derived xenograft models. RESULTS: Pharmacologic activation of SHIP1 using AQX-435 was sufficient to inhibit anti-IgM-induced PI3K-mediated signaling, including induction of AKT phosphorylation and MYC expression, without effects on upstream SYK phosphorylation. AQX-435 also cooperated with the BTK inhibitor ibrutinib to enhance inhibition of anti-IgM-induced AKT phosphorylation. AQX-435 induced caspase-dependent apoptosis of CLL cells preferentially as compared with normal B cells, and overcame in vitro survival-promoting effects of microenvironmental stimuli. Finally, AQX-435 reduced AKT phosphorylation and growth of DLBCL in vivo and cooperated with ibrutinib for tumor growth inhibition. CONCLUSIONS: Our results using AQX-435 demonstrate that SHIP1 activation may be an effective novel therapeutic strategy for treatment of B-cell neoplasms, alone or in combination with ibrutinib.


Antineoplastic Agents/pharmacology , Enzyme Activators/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Sesquiterpenes/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, Inbred NOD , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Signal Transduction , Xenograft Model Antitumor Assays
5.
Methods Mol Biol ; 1881: 1-17, 2019.
Article En | MEDLINE | ID: mdl-30350193

Microenvironmental signaling is pivotal to chronic lymphocytic leukemia (CLL) pathology; therefore understanding how to investigate this pathway by both protein and chemical methods is crucial if we are to investigate and correlate biological changes with therapeutic responses in patients. Herein, we describe the use of western blotting also referred to as immunoblotting as a method that can semiquantitatively evaluate changes in protein expression following receptor engagement; this includes B cell receptor (BCR) signaling following stimulation with anti-IgM (Blunt et al. Clin Cancer Res 23(9):2313-2324, 2017). It is important to note that immunoblotting should always be combined with other quantitative methods such as flow cytometry to confirm activation of these signaling pathways (Aguilar-Hernandez et al. Blood 127(24):3015-3025, 2016).


Blotting, Western/methods , Flow Cytometry/methods , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Signal Transduction , B-Lymphocytes/metabolism , Blotting, Western/instrumentation , Electrophoresis, Polyacrylamide Gel/instrumentation , Electrophoresis, Polyacrylamide Gel/methods , Flow Cytometry/instrumentation , Gene Expression Regulation, Leukemic , Humans , Receptors, Antigen, B-Cell/metabolism
...