Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Earth Environ ; 4(1): 298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665193

RESUMEN

Both carbon dioxide uptake and albedo of the land surface affect global climate. However, climate change mitigation by increasing carbon uptake can cause a warming trade-off by decreasing albedo, with most research focusing on afforestation and its interaction with snow. Here, we present carbon uptake and albedo observations from 176 globally distributed flux stations. We demonstrate a gradual decline in maximum achievable annual albedo as carbon uptake increases, even within subgroups of non-forest and snow-free ecosystems. Based on a paired-site permutation approach, we quantify the likely impact of land use on carbon uptake and albedo. Shifting to the maximum attainable carbon uptake at each site would likely cause moderate net global warming for the first approximately 20 years, followed by a strong cooling effect. A balanced policy co-optimizing carbon uptake and albedo is possible that avoids warming on any timescale, but results in a weaker long-term cooling effect.

2.
J Geophys Res Biogeosci ; 127(8): e2022JG006977, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36248720

RESUMEN

In this study, we propose a new technique for mapping the spatial heterogeneity in gas exchange around flux towers using flux footprint modeling and focusing on detecting hot spots of methane (CH4) flux. In the first part of the study, we used a CH4 release experiment to evaluate three common flux footprint models: the Hsieh model (Hsieh et al., 2000), the Kljun model (Kljun et al., 2015), and the K & M model (Kormann and Meixner, 2001), finding that the K & M model was the most accurate under these conditions. In the second part of the study, we introduce the Footprint-Weighted Flux Map, a new technique to map spatial heterogeneity in fluxes. Using artificial CH4 release experiments, natural tracer approaches and flux chambers we mapped the spatial flux heterogeneity, and detected and validated a hot spot of CH4 flux in a oligohaline restored marsh. Through chamber measurements during the months of April and May, we found that fluxes at the hot spot were on average as high as 6589 ± 7889 nmol m-2 s-1 whereas background flux from the open water were on average 15.2 ± 7.5 nmol m-2 s-1. This study provides a novel tool to evaluate the spatial heterogeneity of fluxes around eddy-covariance towers and creates important insights for the interpretation of hot spots of CH4 flux, paving the way for future studies aiming to understand subsurface biogeochemical processes and the microbiological conditions that lead to the occurrence of hot spots and hot moments of CH4 flux.

3.
J Hazard Mater ; 440: 129721, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963093

RESUMEN

Silver nanoparticles (AgNPs) threaten human and ecosystem health, and are among the most widely used engineered nanomaterials that reach wastewater during production, usage, and disposal phases. This study evaluated the effect of a 100-fold increase in collargol (protein-coated AgNP) and Ag+ ions concentrations in municipal wastewater on the microbial community composition of the filter material biofilms (FMB) and the purification efficiency of the hybrid treatment system consisting of vertical (VF) and horizontal (HF) subsurface flow filters. We found that increased amounts of collargol and AgNO3 in wastewater had a modest effect on the prokaryotic community composition in FMB and did not significantly affect the performance of the studied system. Regardless of how Ag was introduced, 99.9% of it was removed by the system. AgNPs and AgNO3 concentrations did not significantly affect the purification efficiency of the system. AgNO3 induced a higher increase in the genetic potential of certain Ag resistance mechanisms in VFs than collargol; however, the increase in Ag resistance potential was similar for both substances in HF. Hence, the microbial community composition in biofilms of vertical and horizontal flow filters is largely resistant, resilient, or functionally redundant in response to AgNPs addition in the form of collargol.


Asunto(s)
Nanopartículas del Metal , Microbiota , Purificación del Agua , Biopelículas , Humanos , Iones , Plata/análisis , Plata/farmacología , Compuestos de Plata , Aguas Residuales
4.
J Environ Manage ; 312: 114914, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35339792

RESUMEN

Wetlands that are restored for carbon sequestration or created for water treatment are an important sources of greenhouse gases, especially methane. The emission of nitrous oxide (N2O) from these systems is often considered negligible due to the inundation and anerobic conditions that support complete denitrification. We used closed chamber method to analyze N2O fluxes over a long-term period across heterogeneous wetland ecosystem constructed for treating nitrate-rich agricultural runoff. Our results showed that the water depth and temperature were most important factors affecting high N2O emissions. The shallow areas where water depth was less than 9 cm created N2O hot spots that emitted 48.8% of the total wetlands annual emission while only covering 6% of the total area. The annual emission from shallow-water hot spots with dense helophytic vegetation was 4.85 ± 0.5 g N2O-N m-2 y-1 while it was only 0.37 ± 0.01 g N2O-N m-2 y-1 in deeper zones. While the water depth was the main factor for high N2O emissions, the temperatures increased the magnitude of the flux and therefore summer droughts and water drawdown created even larger hot spots. These results also suggest that IPCC benchmarks could underestimate N2O emission from shallow waterbodies. Thus, it is important that the shallow zones and water level drawdown in the created or restored wetlands is avoided to minimize the N2O flux.


Asunto(s)
Óxido Nitroso , Humedales , Dióxido de Carbono/análisis , Ecosistema , Monitoreo del Ambiente , Metano/análisis , Óxido Nitroso/análisis
5.
Nat Commun ; 13(1): 1430, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301304

RESUMEN

Wetland soils are the greatest source of nitrous oxide (N2O), a critical greenhouse gas and ozone depleter released by microbes. Yet, microbial players and processes underlying the N2O emissions from wetland soils are poorly understood. Using in situ N2O measurements and by determining the structure and potential functional of microbial communities in 645 wetland soil samples globally, we examined the potential role of archaea, bacteria, and fungi in nitrogen (N) cycling and N2O emissions. We show that N2O emissions are higher in drained and warm wetland soils, and are correlated with functional diversity of microbes. We further provide evidence that despite their much lower abundance compared to bacteria, nitrifying archaeal abundance is a key factor explaining N2O emissions from wetland soils globally. Our data suggest that ongoing global warming and intensifying environmental change may boost archaeal nitrifiers, collectively transforming wetland soils to a greater source of N2O.


Asunto(s)
Gases de Efecto Invernadero , Microbiota , Gases de Efecto Invernadero/análisis , Óxido Nitroso/análisis , Suelo/química , Microbiología del Suelo , Humedales
6.
Sci Total Environ ; 809: 151723, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34801507

RESUMEN

The carbon (C) budgets of riparian forests are sensitive to climatic variability. Therefore, riparian forests are hot spots of C cycling in landscapes. Only a limited number of studies on continuous measurements of methane (CH4) fluxes from riparian forests is available. Here, we report continuous high-frequency soil and ecosystem (eddy-covariance; EC) measurements of CH4 fluxes with a quantum cascade laser absorption spectrometer for a 2.5-year period and measurements of CH4 fluxes from tree stems using manual chambers for a 1.5 year period from a temperate riparian Alnus incana forest. The results demonstrate that the riparian forest is a minor net annual sink of CH4 consuming 0.24 kg CH4-C ha-1 y-1. Soil water content is the most important determinant of soil, stem, and EC fluxes, followed by soil temperature. There were significant differences in CH4 fluxes between the wet and dry periods. During the wet period, 83% of CH4 was emitted from the tree stems while the ecosystem-level emission was equal to the sum of soil and stem emissions. During the dry period, CH4 was substantially consumed in the soil whereas stem emissions were very low. A significant difference between the EC fluxes and the sum of soil and stem fluxes during the dry period is most likely caused by emission from the canopy whereas at the ecosystem level the forest was a clear CH4 sink. Our results together with past measurements of CH4 fluxes in other riparian forests suggest that temperate riparian forests can be long-term CH4 sinks.


Asunto(s)
Ecosistema , Árboles , Dióxido de Carbono/análisis , Bosques , Metano , Suelo
7.
J Environ Manage ; 299: 113562, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34425499

RESUMEN

The concentration of nitrous oxide (N2O), an ozone-depleting greenhouse gas, is rapidly increasing in the atmosphere. Most atmospheric N2O originates in terrestrial ecosystems, of which the majority can be attributed to microbial cycling of nitrogen in agricultural soils. Here, we demonstrate how the abundance of nitrogen cycling genes vary across intensively managed agricultural fields and adjacent restored wetlands in the Sacramento-San Joaquin Delta in California, USA. We found that the abundances of nirS and nirK genes were highest at the intensively managed organic-rich cornfield and significantly outnumber any other gene abundances, suggesting very high N2O production potential. The quantity of nitrogen transforming genes, particularly those responsible for denitrification, nitrification and DNRA, were highest in the agricultural sites, whereas nitrogen fixation and ANAMMOX was strongly associated with the wetland sites. Although the abundance of nosZ genes was also high at the agricultural sites, the ratio of nosZ genes to nir genes was significantly higher in wetland sites indicating that these sites could act as a sink of N2O. These findings suggest that wetland restoration could be a promising natural climate solution not only for carbon sequestration but also for reduced N2O emissions.


Asunto(s)
Microbiota , Humedales , Desnitrificación , Nitrógeno , Ciclo del Nitrógeno , Óxido Nitroso/análisis , Suelo , Microbiología del Suelo
8.
PLoS One ; 16(3): e0248398, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33765085

RESUMEN

Inundated wetlands can potentially sequester substantial amounts of soil carbon (C) over the long-term because of slow decomposition and high primary productivity, particularly in climates with long growing seasons. Restoring such wetlands may provide one of several effective negative emission technologies to remove atmospheric CO2 and mitigate climate change. However, there remains considerable uncertainty whether these heterogeneous ecotones are consistent net C sinks and to what degree restoration and management methods affect C sequestration. Since wetland C dynamics are largely driven by climate, it is difficult to draw comparisons across regions. With many restored wetlands having different functional outcomes, we need to better understand the importance of site-specific conditions and how they change over time. We report on 21 site-years of C fluxes using eddy covariance measurements from five restored fresh to brackish wetlands in a Mediterranean climate. The wetlands ranged from 3 to 23 years after restoration and showed that several factors related to restoration methods and site conditions altered the magnitude of C sequestration by affecting vegetation cover and structure. Vegetation established within two years of re-flooding but followed different trajectories depending on design aspects, such as bathymetry-determined water levels, planting methods, and soil nutrients. A minimum of 55% vegetation cover was needed to become a net C sink, which most wetlands achieved once vegetation was established. Established wetlands had a high C sequestration efficiency (i.e. the ratio of net to gross ecosystem productivity) comparable to upland ecosystems but varied between years undergoing boom-bust growth cycles and C uptake strength was susceptible to disturbance events. We highlight the large C sequestration potential of productive inundated marshes, aided by restoration design and management targeted to maximise vegetation extent and minimise disturbance. These findings have important implications for wetland restoration, policy, and management practitioners.


Asunto(s)
Dióxido de Carbono/metabolismo , Secuestro de Carbono , Cambio Climático , Ecosistema , Humedales , California , Inundaciones , Estaciones del Año
9.
Glob Chang Biol ; 26(9): 4998-5016, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32574398

RESUMEN

The role of coastal mangrove wetlands in sequestering atmospheric carbon dioxide (CO2 ) and mitigating climate change has received increasing attention in recent years. While recent studies have shown that methane (CH4 ) emissions can potentially offset the carbon burial rates in low-salinity coastal wetlands, there is hitherto a paucity of direct and year-round measurements of ecosystem-scale CH4 flux (FCH4 ) from mangrove ecosystems. In this study, we examined the temporal variations and biophysical drivers of ecosystem-scale FCH4 in a subtropical estuarine mangrove wetland based on 3 years of eddy covariance measurements. Our results showed that daily mangrove FCH4 reached a peak of over 0.1 g CH4 -C m-2  day-1 during the summertime owing to a combination of high temperature and low salinity, while the wintertime FCH4 was negligible. In this mangrove, the mean annual CH4 emission was 11.7 ± 0.4 g CH4 -C m-2  year-1 while the annual net ecosystem CO2 exchange ranged between -891 and -690 g CO2 -C m-2  year-1 , indicating a net cooling effect on climate over decadal to centurial timescales. Meanwhile, we showed that mangrove FCH4 could offset the negative radiative forcing caused by CO2 uptake by 52% and 24% over a time horizon of 20 and 100 years, respectively, based on the corresponding sustained-flux global warming potentials. Moreover, we found that 87% and 69% of the total variance of daily FCH4 could be explained by the random forest machine learning algorithm and traditional linear regression model, respectively, with soil temperature and salinity being the most dominant controls. This study was the first of its kind to characterize ecosystem-scale FCH4 in a mangrove wetland with long-term eddy covariance measurements. Our findings implied that future environmental changes such as climate warming and increasing river discharge might increase CH4 emissions and hence reduce the net radiative cooling effect of estuarine mangrove forests.


Asunto(s)
Metano , Humedales , Dióxido de Carbono/análisis , Ecosistema , Suelo
10.
Sci Total Environ ; 639: 67-74, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29778683

RESUMEN

Biochar has shown great potential as an amendment to improve soil quality and promote plant growth, as well as to adsorb pollutants from water. However, information about the effect of biochar on the wastewater treatment efficiency in horizontal subsurface flow (HSSF) constructed wetlands (CWs) is still scarce. In this study, we assessed the effect of biochar amendment on the purification efficiency of pretreated municipal wastewater in planted (Typha latifolia) experimental horizontal subsurface flow filters filled with lightweight expanded clay aggregates (LECA). The addition of wood-derived biochar (10% v/v) to LECA significantly increased plant biomass production and enhanced the wastewater treatment efficiency of the planted filters. Both the aboveground plant biomass and belowground plant biomass were higher (1.9- and 1.5-fold, respectively) in the filters of the LBP (LECA + biochar + plants) treatments compared to the LP (LECA + plants) filters. The water pH was significantly lower in the planted filters (LBP < LP < LB-LECA + biochar). The efficiencies of TN and TP removal from wastewater were highest in the LBP filters (20.0% and 22.5%, respectively), followed by the LP (13.7% and 16.2%, respectively) and LB (9.5% and 15.6%, respectively) filters. More N and P were incorporated into the plant biomass from wastewater in the presence of biochar in the filter medium. The study results confirm that biochar can be an advantageous supplement for planted HSSF CWs to enhance the treatment efficiency of these systems.

11.
Nat Commun ; 9(1): 1748, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700326

RESUMEN

The original version of this Article contained an error in the first sentence of the Acknowledgements section, which incorrectly referred to the Estonian Research Council grant identifier as "PUTJD618". The correct version replaces the grant identifier with "PUTJD619". This has been corrected in both the PDF and HTML versions of the Article.

12.
Sci Rep ; 8(1): 4742, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29549345

RESUMEN

Tropical peatlands, which play a crucial role in the maintenance of different ecosystem services, are increasingly drained for agriculture, forestry, peat extraction and human settlement purposes. The present study investigated the differences between natural and drained sites of a tropical peatland in the community structure of soil bacteria and archaea and their potential to perform nitrogen transformation processes. The results indicate significant dissimilarities in the structure of soil bacterial and archaeal communities as well as nirK, nirS, nosZ, nifH and archaeal amoA gene-possessing microbial communities. The reduced denitrification and N2-fixing potential was detected in the drained tropical peatland soil. In undisturbed peatland soil, the N2O emission was primarily related to nirS-type denitrifiers and dissimilatory nitrate reduction to ammonium, while the conversion of N2O to N2 was controlled by microbes possessing nosZ clade I genes. The denitrifying microbial community of the drained site differed significantly from the natural site community. The main reducers of N2O were microbes harbouring nosZ clade II genes in the drained site. Additionally, the importance of DNRA process as one of the controlling mechanisms of N2O fluxes in the natural peatlands of the tropics revealed from the results of the study.


Asunto(s)
Bacterias/clasificación , Genes Bacterianos , Ciclo del Nitrógeno , Nitrógeno/análisis , Óxido Nitroso/análisis , Suelo/química , Clima Tropical , Archaea/clasificación , Archaea/genética , Archaea/crecimiento & desarrollo , Archaea/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Genes Arqueales , Filogenia , Microbiología del Suelo , Humedales
13.
Nat Commun ; 9(1): 1135, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555906

RESUMEN

Nitrous oxide (N2O) is a powerful greenhouse gas and the main driver of stratospheric ozone depletion. Since soils are the largest source of N2O, predicting soil response to changes in climate or land use is central to understanding and managing N2O. Here we find that N2O flux can be predicted by models incorporating soil nitrate concentration (NO3-), water content and temperature using a global field survey of N2O emissions and potential driving factors across a wide range of organic soils. N2O emissions increase with NO3- and follow a bell-shaped distribution with water content. Combining the two functions explains 72% of N2O emission from all organic soils. Above 5 mg NO3--N kg-1, either draining wet soils or irrigating well-drained soils increases N2O emission by orders of magnitude. As soil temperature together with NO3- explains 69% of N2O emission, tropical wetlands should be a priority for N2O management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...