Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Anim Sci J ; 94(1): e13882, 2023.
Article En | MEDLINE | ID: mdl-37909240

Japanese Brown cattle are the second most popular Wagyu breed, and the Kumamoto sub-breed shows better daily gain and carcass weight. One of the breeding objectives for this sub-breed is to reduce genetic defects. Chondrodysplastic dwarfism and factor VIII deficiency have been identified as genetic diseases in the Kumamoto sub-breed. Previously, we detected individuals in the Kumamoto sub-breed with causative alleles of genetic diseases identified in Japanese Black cattle. In the current study, 11 mutations responsible for genetic diseases in the Wagyu breeds were analyzed to evaluate the risk of genetic diseases in the Kumamoto sub-breed. Genotyping revealed the causative mutations of chondrodysplastic dwarfism, factor XI deficiency, and factor XIII deficiency and suggested the appearance of affected animals in this sub-breed. DNA testing for these diseases is needed to prevent economic loses in beef production using the Kumamoto sub-breed.


Cattle Diseases , Dwarfism , Factor XI Deficiency , Factor XIII Deficiency , Humans , Cattle/genetics , Animals , Factor XI Deficiency/genetics , Factor XI Deficiency/veterinary , Alleles , Factor XIII Deficiency/genetics , Factor XIII Deficiency/veterinary , Breeding , Dwarfism/genetics , Dwarfism/veterinary , Cattle Diseases/genetics
2.
BMC Genomics ; 23(1): 694, 2022 Oct 07.
Article En | MEDLINE | ID: mdl-36207673

BACKGROUND: Coat color is important for registration and maintenance of livestock. Standard coat color of Kumamoto sub-breed of Japanese Brown cattle is solid brown, but individuals with diluted coat color have been observed recently. In this study, we attempted to identify polymorphism(s) responsible for coat color dilution by whole genome analysis. RESULTS: One of the diluted cattle possessed 7302 exonic polymorphisms which could affect genes' function. Among them, 14 polymorphisms in 10 coat color-related genes were assumed to be specific for the diluted cattle. Subsequent genotyping with three diluted cattle and 74 standard cattle elucidated that PMEL p.Leu18del was the causative polymorphism for coat color dilution in this sub-breed. Individuals with del/del type of this polymorphism showed diluted coat color, but coat color of heterozygotes were intermediate with various dilution rates. CONCLUSIONS: Coat color dilution of Kumamoto sub-breed was caused by PMEL p.Leu18del. The causative del allele has been detected in several genetically distant cattle breeds, suggesting that PMEL p.Leu18del can be used as a DNA marker to control cattle coat color.


Hair Color , Polymorphism, Single Nucleotide , Alleles , Animals , Cattle/genetics , Exons , Genetic Markers , Hair Color/genetics , Phenotype
3.
Anim Sci J ; 93(1): e13698, 2022.
Article En | MEDLINE | ID: mdl-35247014

The Kumamoto sub-breed of Japanese Brown cattle has unique characteristics, such as great growth rate, and their contribution as future breeding materials is expected. To develop a DNA marker for their breeding, we investigated the effects of Leptin gene, controlling energy homeostasis, on carcass traits of the Kumamoto sub-breed. Sequence comparison identified five single nucleotide polymorphisms (SNPs): four linked synonymous mutations and one nonsynonymous mutation. Statistical analysis revealed that c.239C > T (p.A80V) had significant effects on the traits related with quality grade: beef marbling standard (p = 0.0132), meat brightness (p = 0.0383), and meat firmness (p = 0.0115). The C allele showed favorable effects; these scores of the C/C cattle were significantly higher than those of the C/T cattle. On the other hand, the effect of c.399T > C was observed on meat firmness (p = 0.0172) and beef fat standards (BFS) (p = 0.0129). The C/C cattle showed higher values of these traits than the T/T cattle. Our data suggested that these SNPs in Leptin gene could be used as a DNA marker for breeding of the Kumamoto sub-breed.


Leptin , Meat , Alleles , Animals , Cattle/genetics , Leptin/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics
4.
J Comp Physiol B ; 191(2): 411-425, 2021 03.
Article En | MEDLINE | ID: mdl-33575865

A series of kinematic and electromyographic (EMG) studies were conducted to characterize the neural control of underground movement in the Japanese mole, Mogera wogura. For the purposes of the present study, the locomotion of moles was classified into two modes: crawling, which comprises alternate movements of the left and right forelimbs; and burrowing, in which both forelimbs move synchronously. In crawling, moles exhibit both symmetrical and asymmetrical locomotion independent of cycle duration and speed of travel. In burrowing, the movements of fore- and hindlimbs, and of the left and right hindlimb are loosely coordinated. We divided cycles of limb movement into recovery stroke phase and power stroke phases and observed that control of cycle duration in forelimbs and hindlimbs was achieved through changes to both recovery and power stroke phases. Our results showed phasic EMG bursts in various muscles in moles, whose timing differed from that seen in terrestrial four-legged mammals such as cats and dogs. The difference was especially apparent in the m. longissimus, in which EMG bursts recorded at the level of the thoracic and lumbar vertebrae corresponded to movements of the forelimbs and hindlimbs, respectively. Thus, we conclude that moles have evolved a distinctive mechanism of neural control to perform their specialized forms of underground locomotion.


Moles , Animals , Biomechanical Phenomena , Cats , Dogs , Electromyography , Japan , Locomotion
5.
J Vet Med Sci ; 82(12): 1816-1820, 2021 Jan 05.
Article En | MEDLINE | ID: mdl-33191387

A rare dysraphic caudal spinal anomaly, or caudal agenesis, comprising a tethered spinal cord, was found in a tailless Holstein calf that presented ataxia and paresis with analgesia of the hind limbs. The gently and slimly tapered conus medullaris was poorly formed between S2 and S3 which indicated that it was lying more caudally. The caudal end of the filum terminale adhered to the inner periosteum of the vertebral arch at S4, which is compatible with tethering of the spinal cord. The dysraphic changes from the secondary neurulation error and the longitudinal deranged cord morphology that may have been caused by the caudad traction due to tethering were confirmed. This represents the first bovine case with definitive morphological confirmation.


Cattle Diseases , Cauda Equina , Neural Tube Defects , Spinal Dysraphism , Animals , Cattle , Magnetic Resonance Imaging , Neural Tube Defects/veterinary , Spinal Cord , Spinal Dysraphism/veterinary , Spine
6.
Anim Sci J ; 91(1): e13367, 2020.
Article En | MEDLINE | ID: mdl-32285552

Coat color is one of the important factors characterizing breeds for domestic animals. Melanocortin 1 receptor (MC1R) is a representative responsible gene for this phenotype. Two single-nucleotide polymorphisms (SNPs) in bovine MC1R gene, c.296T > C and c.310G>-, have been well characterized, but these SNPs are not enough to explain cattle coat color. As far as we know, MC1R genotypes of Kumamoto sub-breed of Japanese Brown cattle have not been analyzed. In the current study, genotyping for c.296T > C and c.310G>- was performed to elucidate the role of MC1R in determining the coat color of this sub-breed. As a result, most animals were e/e genotype, suggesting the coat color of this sub-breed is derived from the e allele of MC1R gene. However, we found six animals with E/e genotype, which coat color would be black theoretically. Subsequently, sequence comparison was performed with these animals to identify other polymorphisms affecting coat color, elucidating that these animals possessed the A allele of c.871G > A commonly. c.871G > A was a non-synonymous mutation in the seventh transmembrane domain, suggesting alteration of the function and/or the structure of MC1R protein. Our data indicated that the A allele of c.871G > A might be a loss-of-function mutation.


Cattle/genetics , Hair Color/genetics , Phenotype , Receptor, Melanocortin, Type 1/genetics , Alleles , Animals , Female , Genotype , Loss of Function Mutation , Polymorphism, Single Nucleotide , Receptor, Melanocortin, Type 1/chemistry
7.
J Comp Physiol B ; 189(6): 707-715, 2019 12.
Article En | MEDLINE | ID: mdl-31612249

This report demonstrates the variable cardiac rhythm in two species of subterranean mole, the large Japanese mole (Mogera wogura) and the lesser Japanese mole (Mogera imaizumii). The phenomenon was revealed using X-ray videos of M. wogura and investigated in detail using electrocardiogram (ECG) traces recorded with implanted electrodes in this species and M. imaizumii. Cessation of heartbeat and extended R-R intervals were observed in the ECGs from both species during short bouts of rest in wakeful specimens of both species under normoxic conditions at room temperature. The mean durations of R-R intervals were 288.8 ± 3.3 ms for M. wogura and 191.9 ± 2.4 ms for M. imaizumii. The cardiac rhythm in both species became more unstable and R-R interval was prolonged by 153.5% ± 17.7 after injection of a sympathetic blocker (propranolol), whereas the application of a parasympathetic blocker (atropine) resulted in increasing stability and a reduced interval between R wave peaks (R-R) 64.2% ± 4.8. ECGs of two related soricomorphs, the fossorial Japanese shrew-mole (Urotrichus talpoides) and surface-dwelling Japanese white-toothed shrew (Crocidura dsinezumi) were also recorded and compared for comparison. The heartbeats of these species were relatively stable compared with those of the subterranean moles. Our results indicated clear differences in the physiological cardiac features between the examined members of the Soricomorpha.


Heart Rate/physiology , Moles/physiology , Animals , Electrocardiography , Japan
8.
Physiol Behav ; 139: 519-23, 2015 Feb.
Article En | MEDLINE | ID: mdl-25483213

Many small mammal species use torpor as a strategy for reducing energy expenditure in winter. Some rodent hibernators also hoard food to provide reserves of energy, and individuals with large hoards express less torpor than those with smaller reserves. These facts imply that animals can recognize levels of food availability, but where food is very plentiful, it is unclear whether torpor expression is affected by temporal changes in the extent of food overabundance. Moreover, the relationship between daily torpor and excess food availability has not been clearly established. The large Japanese field mouse Apodemus speciosus caches food for use as a winter energy resource and exhibits daily torpor under artificial winter conditions. The present study examined whether individuals exposed to different magnitudes of overabundant food exhibited differences in expression of daily torpor, and secondly whether torpor expression varied in response to changes in the overall quantity of overabundant food. It was observed that while absolute quantities of overabundant food did not appear to affect daily torpor expression, the mice did respond to changes in food availability, even when food remained overabundant. This suggests that the mice respond to fluctuations in food availability, even where these changes do not place any constraint on energy budgets. Thus recognition of changing food availability cannot be a purely physiological response to shortage or plenty, and may contribute to predictions of future energy availability. The expression of torpor was inhibited in response to increasing food availability, and the mice used shallower torpor when food availability increased to superabundance. These findings suggest that daily torpor may be regulated not only physiologically in response to energy constraints but also psychologically, via recognition of food availability.


Food , Murinae/physiology , Murinae/psychology , Torpor , Animals , Body Size , Female , Male , Time Factors
9.
Physiol Behav ; 133: 22-9, 2014 Jun 22.
Article En | MEDLINE | ID: mdl-24813827

Small endotherms employ multiple adaptations to maintain energy balance in winter, including spontaneous daily torpor and simultaneous huddling. The relationships between these adaptations have been discussed in several previous studies, but it has not been well-established if huddling actually affects the expression of torpor in small endotherms. We examine whether and how huddling affects the expression of torpor in the large Japanese field mouse Apodemus speciosus, which is known to become torpid under artificial winter conditions. The mice were found to adjust expression of torpor in response to the number of cage mates. Torpor frequency and minimum torpid body temperature were both significantly elevated when the number of cage mates was increased, but there was no significant change in torpor bout length. Rewarming rate on arousal was lower when the number of cage mates was increased, suggesting reduction in endogenous rewarming due to exogenous passive rewarming. Food consumption per mouse decreased significantly with increasing number of cage mates. Thus, our study demonstrates that social thermoregulatory behaviors such as huddling can facilitate expression of spontaneous daily torpor in small rodents. These findings suggest that energy constraints, such as ambient temperature and food availability may not be the only modulating factors on the expression of daily torpor.


Body Temperature Regulation/physiology , Energy Metabolism/physiology , Torpor/physiology , Acclimatization/physiology , Animals , Eating , Female , Male , Mice , Sex Factors , Time Factors
...