Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Care ; 27(1): 235, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312192

RESUMEN

BACKGROUND: Cerebral autoregulation (CA) can be impaired in patients with delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH). The Pressure Reactivity Index (PRx, correlation of blood pressure and intracranial pressure) and Oxygen Reactivity Index (ORx, correlation of cerebral perfusion pressure and brain tissue oxygenation, PbtO2) are both believed to estimate CA. We hypothesized that CA could be poorer in hypoperfused territories during DCI and that ORx and PRx may not be equally effective in detecting such local variances. METHODS: ORx and PRx were compared daily in 76 patients with aSAH with or without DCI until the time of DCI diagnosis. The ICP/PbtO2-probes of DCI patients were retrospectively stratified by being in or outside areas of hypoperfusion via CT perfusion image, resulting in three groups: DCI + /probe + (DCI patients, probe located inside the hypoperfused area), DCI + /probe- (probe outside the hypoperfused area), DCI- (no DCI). RESULTS: PRx and ORx were not correlated (r = - 0.01, p = 0.56). Mean ORx but not PRx was highest when the probe was located in a hypoperfused area (ORx DCI + /probe + 0.28 ± 0.13 vs. DCI + /probe- 0.18 ± 0.15, p < 0.05; PRx DCI + /probe + 0.12 ± 0.17 vs. DCI + /probe- 0.06 ± 0.20, p = 0.35). PRx detected poorer autoregulation during the early phase with relatively higher ICP (days 1-3 after hemorrhage) but did not differentiate the three groups on the following days when ICP was lower on average. ORx was higher in the DCI + /probe + group than in the other two groups from day 3 onward. ORx and PRx did not differ between patients with DCI, whose probe was located elsewhere, and patients without DCI (ORx DCI + /probe- 0.18 ± 0.15 vs. DCI- 0.20 ± 0.14; p = 0.50; PRx DCI + /probe- 0.06 ± 0.20 vs. DCI- 0.08 ± 0.17, p = 0.35). CONCLUSIONS: PRx and ORx are not interchangeable measures of autoregulation, as they likely measure different homeostatic mechanisms. PRx represents the classical cerebrovascular reactivity and might be better suited to detect disturbed autoregulation during phases with moderately elevated ICP. Autoregulation may be poorer in territories affected by DCI. These local perfusion disturbances leading up to DCI may be more readily detected by ORx than PRx. Further research should investigate their robustness to detect DCI and to serve as a basis for autoregulation-targeted treatment after aSAH.


Asunto(s)
Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/complicaciones , Estudios Retrospectivos , Perfusión , Infarto Cerebral , Estudios de Cohortes
2.
Stroke ; 54(1): 189-197, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36314124

RESUMEN

BACKGROUND: Targeting a cerebral perfusion pressure optimal for cerebral autoregulation (CPPopt) has been gaining more attention to prevent secondary damage after acute neurological injury. Brain tissue oxygenation (PbtO2) can identify insufficient cerebral blood flow and secondary brain injury. Defining the relationship between CPPopt and PbtO2 after aneurysmal subarachnoid hemorrhage may result in (1) mechanistic insights into whether and how CPPopt-based strategies might be beneficial and (2) establishing support for the use of PbtO2 as an adjunctive monitor for adequate or optimal local perfusion. METHODS: We performed a retrospective analysis of a prospectively collected 2-center dataset of patients with aneurysmal subarachnoid hemorrhage with or without later diagnosis of delayed cerebral ischemia (DCI). CPPopt was calculated as the cerebral perfusion pressure (CPP) value corresponding to the lowest pressure reactivity index (moving correlation coefficient of mean arterial and intracranial pressure). The relationship of (hourly) deltaCPP (CPP-CPPopt) and PbtO2 was investigated using natural spline regression analysis. Data after DCI diagnosis were excluded. Brain tissue hypoxia was defined as PbtO2 <20 mmHg. RESULTS: One hundred thirty-one patients were included with a median of 44.0 (interquartile range, 20.8-78.3) hourly CPPopt/PbtO2 datapoints. The regression plot revealed a nonlinear relationship between PbtO2 and deltaCPP (P<0.001) with PbtO2 decrease with deltaCPP <0 mmHg and stable PbtO2 with deltaCPP ≥0mmHg, although there was substantial individual variation. Brain tissue hypoxia (34.6% of all measurements) was more frequent with deltaCPP <0 mmHg. These dynamics were similar in patients with or without DCI. CONCLUSIONS: We found a nonlinear relationship between PbtO2 and deviation of patients' CPP from CPPopt in aneurysmal subarachnoid hemorrhage patients in the pre-DCI period. CPP values below calculated CPPopt were associated with lower PbtO2. Nevertheless, the nature of PbtO2 measurements is complex, and the variability is high. Combined multimodality monitoring with CPP/CPPopt and PbtO2 should be recommended to redefine individual pressure targets (CPP/CPPopt) and retain the option to detect local perfusion deficits during DCI (PbtO2), which cannot be fulfilled by both measurements interchangeably.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Isquemia Encefálica , Hemorragia Subaracnoidea , Humanos , Estudios Retrospectivos , Oxígeno , Encéfalo/diagnóstico por imagen , Infarto Cerebral , Presión Intracraneal , Circulación Cerebrovascular/fisiología , Hipoxia , Lesiones Traumáticas del Encéfalo/diagnóstico
3.
Stroke ; 53(8): 2607-2616, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35674046

RESUMEN

BACKGROUND: Rescue treatment for delayed cerebral ischemia (DCI) after subarachnoid hemorrhage can include induced hypertension (iHTN) and, in refractory cases, endovascular approaches, of which selective, continuous intraarterial nimodipine (IAN) is one variant. The combination of iHTN and IAN can dramatically increase vasopressor demand. In case of unsustainable doses, iHTN is often prioritized over IAN. However, evidence in this regard is largely lacking. We investigated the effects of a classical (iHTN+IAN) and modified (IANonly) treatment protocol for refractory DCI in an observational study. METHODS: Rescue treatment for DCI was initiated with iHTN (target >180 mm Hg systolic) and escalated to IAN in refractory cases. Until July 2018, both iHTN and IAN were offered in cases refractory to iHTN alone. After protocol modification, iHTN target was preemptively lowered to >120 mm Hg when IAN was initiated (IANonly). Primary outcome was noradrenaline demand. Secondary outcomes included noradrenaline-associated complications, brain tissue oxygenation, DCI-related infarction and favorable 6-month outcome (Glasgow Outcome Scale 4-5). RESULTS: N=29 and n=20 patients were treated according to the classical and modified protocol, respectively. Protocol modification resulted in a significant reduction of noradrenaline demand (iHTN+IAN 0.70±0.54 µg/kg per minute and IANonly 0.26±0.20 µg/kg per minute, P<0.0001) and minor complications (15.0% versus 48.3%, unadjusted odds ratio, 0.19 [95% CI, 0.05-0.79]; P<0.05) with comparable rates of major complications (20.0% versus 20.7%, odds ratio, 0.96 [0.23-3.95]; P=0.95). Incidence of DCI-related infarction (45.0% versus 41.1%, odds ratio, 1.16 [0.37-3.66]; P=0.80) and favorable clinical outcome (55.6% versus 40.0%, odds ratio, 1.88 [0.55-6.39]; P=0.32) were similar. Brain tissue oxygenation was significantly higher with IANonly (26.6±12.8, 39.6±15.4 mm Hg; P<0.01). CONCLUSIONS: Assuming the potential of iHTN to be exhausted in case of refractory hypoperfusion, additional IAN may serve as a last-resort measure to bridge hypoperfusion in the DCI phase. With close monitoring, preemptive lowering of pressure target after induction of IAN may be a safe alternative to alleviate total noradrenaline load and potentially reduce complication rate.


Asunto(s)
Isquemia Encefálica , Hipertensión , Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Isquemia Encefálica/epidemiología , Infarto Cerebral/complicaciones , Infarto Cerebral/tratamiento farmacológico , Protocolos Clínicos , Humanos , Hipertensión/complicaciones , Nimodipina/uso terapéutico , Norepinefrina/uso terapéutico , Estudios Observacionales como Asunto , Hemorragia Subaracnoidea/complicaciones , Vasoespasmo Intracraneal/etiología
4.
Neurocrit Care ; 37(Suppl 2): 230-236, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35352273

RESUMEN

BACKGROUND: Dysfunctional cerebral autoregulation often precedes delayed cerebral ischemia (DCI). Currently, there are no data-driven techniques that leverage this information to predict DCI in real time. Our hypothesis is that information using continuous updated analyses of multimodal neuromonitoring and cerebral autoregulation can be deployed to predict DCI. METHODS: Time series values of intracranial pressure, brain tissue oxygenation, cerebral perfusion pressure (CPP), optimal CPP (CPPOpt), ΔCPP (CPP - CPPOpt), mean arterial pressure, and pressure reactivity index were combined and summarized as vectors. A validated temporal signal angle measurement was modified into a classification algorithm that incorporates hourly data. The time-varying temporal signal angle measurement (TTSAM) algorithm classifies DCI at varying time points by vectorizing and computing the angle between the test and reference time signals. The patient is classified as DCI+ if the error between the time-varying test vector and DCI+ reference vector is smaller than that between the time-varying test vector and DCI- reference vector. Finally, prediction at time point t is calculated as the majority voting over all the available signals. The leave-one-patient-out cross-validation technique was used to train and report the performance of the algorithms. The TTSAM and classifier performance was determined by balanced accuracy, F1 score, true positive, true negative, false positive, and false negative over time. RESULTS: One hundred thirty-one patients with aneurysmal subarachnoid hemorrhage who underwent multimodal neuromonitoring were identified from two centers (Columbia University: 52 [39.7%], Aachen University: 79 [60.3%]) and included in the analysis. Sixty-four (48.5%) patients had DCI, and DCI was diagnosed 7.2 ± 3.3 days after hemorrhage. The TTSAM algorithm achieved a balanced accuracy of 67.3% and an F1 score of 0.68 at 165 h (6.9 days) from bleed day with a true positive of 0.83, false positive of 0.16, true negative of 0.51, and false negative of 0.49. CONCLUSIONS: A TTSAM algorithm using multimodal neuromonitoring and cerebral autoregulation calculations shows promise to classify DCI in real time.


Asunto(s)
Isquemia Encefálica , Hemorragia Subaracnoidea , Isquemia Encefálica/diagnóstico , Infarto Cerebral , Circulación Cerebrovascular/fisiología , Humanos , Presión Intracraneal
5.
Crit Care Med ; 50(2): 183-191, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100191

RESUMEN

OBJECTIVES: The recommendation of induced hypertension for delayed cerebral ischemia treatment after aneurysmal subarachnoid hemorrhage has been challenged recently and ideal pressure targets are missing. A new concept advocates an individual cerebral perfusion pressure where cerebral autoregulation functions best to ensure optimal global perfusion. We characterized optimal cerebral perfusion pressure at time of delayed cerebral ischemia and tested the conformity of induced hypertension with this target value. DESIGN: Retrospective analysis of prospectively collected data. SETTING: University hospital neurocritical care unit. PATIENTS: Thirty-nine aneurysmal subarachnoid hemorrhage patients with invasive neuromonitoring (20 with delayed cerebral ischemia, 19 without delayed cerebral ischemia). INTERVENTIONS: Induced hypertension greater than 180 mm Hg systolic blood pressure. MEASUREMENTS AND MAIN RESULTS: Changepoint analysis was used to calculate significant changes in cerebral perfusion pressure, optimal cerebral perfusion pressure, and the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure 48 hours before delayed cerebral ischemia diagnosis. Optimal cerebral perfusion pressure increased 30 hours before the onset of delayed cerebral ischemia from 82.8 ± 12.5 to 86.3 ± 11.4 mm Hg (p < 0.05). Three hours before delayed cerebral ischemia, a changepoint was also found in the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure (decrease from -0.2 ± 11.2 to -7.7 ± 7.6 mm Hg; p < 0.05) with a corresponding increase in pressure reactivity index (0.09 ± 0.33 to 0.19 ± 0.37; p < 0.05). Cerebral perfusion pressure at time of delayed cerebral ischemia was lower than in patients without delayed cerebral ischemia in a comparable time frame (cerebral perfusion pressure delayed cerebral ischemia 81.4 ± 8.3 mm Hg, no delayed cerebral ischemia 90.4 ± 10.5 mm Hg; p < 0.05). Inducing hypertension resulted in a cerebral perfusion pressure above optimal cerebral perfusion pressure (+12.4 ± 8.3 mm Hg; p < 0.0001). Treatment response (improvement of delayed cerebral ischemia: induced hypertension+ [n = 15] or progression of delayed cerebral ischemia: induced hypertension- [n = 5]) did not correlate to either absolute values of cerebral perfusion pressure or optimal cerebral perfusion pressure, nor the resulting difference (cerebral perfusion pressure [p = 0.69]; optimal cerebral perfusion pressure [p = 0.97]; and the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure [p = 0.51]). CONCLUSIONS: At the time of delayed cerebral ischemia occurrence, there is a significant discrepancy between cerebral perfusion pressure and optimal cerebral perfusion pressure with worsening of autoregulation, implying inadequate but identifiable individual perfusion. Standardized induction of hypertension resulted in cerebral perfusion pressures that exceeded individual optimal cerebral perfusion pressure in delayed cerebral ischemia patients. The potential benefit of individual blood pressure management guided by autoregulation-based optimal cerebral perfusion pressure should be explored in future intervention studies.


Asunto(s)
Isquemia Encefálica/etiología , Circulación Cerebrovascular/fisiología , Hemorragia Subaracnoidea/complicaciones , Factores de Tiempo , Adulto , Isquemia Encefálica/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Hemorragia Subaracnoidea/fisiopatología , Centros de Atención Terciaria/organización & administración , Centros de Atención Terciaria/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...