Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Genes Environ ; 46(1): 12, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711096

BACKGROUND: Sinonasal adenocarcinoma is a rare cancer, encompassing two different entities, the intestinal-type sinonasal adenocarcinoma (ITAC) and the non-intestinal-type sinonasal adenocarcinoma (non-ITAC). Occurrence of ITAC is strongly associated with exposure to hardwood dusts. In countries with predominant exposure to softwood dust the occurrence of sinonasal adenocarcinomas is lower and the relative amount of non-ITACs to ITACs is higher. The molecular mechanisms behind the tumorigenic effects of wood dust remain largely unknown. METHODS: We carried out whole-genome sequencing of formalin-fixed paraffin-embedded (FFPE) samples of sinonasal adenocarcinomas from ten wood dust-exposed and six non-exposed individuals, with partial tobacco exposure data. Sequences were analyzed for the presence of mutational signatures matching COSMIC database signatures. Driver mutations and CN variant regions were characterized. RESULTS: Mutation burden was higher in samples of wood dust-exposed patients (p = 0.016). Reactive oxygen species (ROS) damage-related mutational signatures were almost exclusively identified in ITAC subtype samples (p = 0.00055). Tobacco smoke mutational signatures were observed in samples of patients with tobacco exposure or missing information, but not in samples from non-exposed patients. A tetraploidy copy number (CN) signature was enriched in ITAC subtype (p = 0.042). CN variation included recurrent gains in COSMIC Cancer Gene Census genes TERT, SDHA, RAC1, ETV1, PCM1, and MYC. Pathogenic variants were observed most frequently in TP53, NF1, CHD2, BRAF, APC, and LRP1B. Driver mutations and copy number gains did not segregate by subtype. CONCLUSIONS: Our analysis identified distinct mutational characteristics in ITAC and non-ITAC. Mutational signature analysis may eventually become useful for documentation of occupation-related cancer, while the exact mechanisms behind wood dust-driven carcinogenesis remain elusive. The presence of homologous recombination deficiency signatures implies a novel opportunity for treatment, but further studies are needed.

2.
Sci Rep ; 14(1): 11562, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773237

Predisposing factors underlying familial aggregation of non-syndromic gliomas are still to be uncovered. Whole-exome sequencing was performed in four Finnish families with brain tumors to identify rare predisposing variants. A total of 417 detected exome variants and 102 previously reported glioma-related variants were further genotyped in 19 Finnish families with brain tumors using targeted sequencing. Rare damaging variants in GALNT13, MYO10 and AR were identified. Two families carried either c.553C>T (R185C) or c.1214T>A (L405Q) on GALNT13. Variant c.553C>T is located on the substrate-binding site of GALNT13. AR c.2180G>T (R727L), which is located on a ligand-binding domain of AR, was detected in two families, one of which also carried a GALNT13 variant. MYO10 c.4448A>G (N1483S) was detected in two families and c.1511C>T (A504V) variant was detected in one family. Both variants are located on functional domains related to MYO10 activity in filopodia formation. In addition, affected cases in six families carried a known glioma risk variant rs55705857 in CCDC26 and low-risk glioma variants. These novel findings indicate polygenic inheritance of familial glioma in Finland and increase our understanding of the genetic contribution to familial glioma susceptibility.


Genetic Predisposition to Disease , Glioma , N-Acetylgalactosaminyltransferases , Pedigree , Humans , Finland , Glioma/genetics , Glioma/pathology , Female , Male , N-Acetylgalactosaminyltransferases/genetics , Polypeptide N-acetylgalactosaminyltransferase , Germ-Line Mutation , Adult , Middle Aged , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Exome Sequencing
3.
Genome Med ; 15(1): 47, 2023 Jul 07.
Article En | MEDLINE | ID: mdl-37420249

BACKGROUND: Cancer genome sequencing enables accurate classification of tumours and tumour subtypes. However, prediction performance is still limited using exome-only sequencing and for tumour types with low somatic mutation burden such as many paediatric tumours. Moreover, the ability to leverage deep representation learning in discovery of tumour entities remains unknown. METHODS: We introduce here Mutation-Attention (MuAt), a deep neural network to learn representations of simple and complex somatic alterations for prediction of tumour types and subtypes. In contrast to many previous methods, MuAt utilizes the attention mechanism on individual mutations instead of aggregated mutation counts. RESULTS: We trained MuAt models on 2587 whole cancer genomes (24 tumour types) from the Pan-Cancer Analysis of Whole Genomes (PCAWG) and 7352 cancer exomes (20 types) from the Cancer Genome Atlas (TCGA). MuAt achieved prediction accuracy of 89% for whole genomes and 64% for whole exomes, and a top-5 accuracy of 97% and 90%, respectively. MuAt models were found to be well-calibrated and perform well in three independent whole cancer genome cohorts with 10,361 tumours in total. We show MuAt to be able to learn clinically and biologically relevant tumour entities including acral melanoma, SHH-activated medulloblastoma, SPOP-associated prostate cancer, microsatellite instability, POLE proofreading deficiency, and MUTYH-associated pancreatic endocrine tumours without these tumour subtypes and subgroups being provided as training labels. Finally, scrunity of MuAt attention matrices revealed both ubiquitous and tumour-type specific patterns of simple and complex somatic mutations. CONCLUSIONS: Integrated representations of somatic alterations learnt by MuAt were able to accurately identify histological tumour types and identify tumour entities, with potential to impact precision cancer medicine.


Mutation , Neoplasms , Neoplasms/genetics , Neoplasms/pathology , Humans , Deep Learning , Benchmarking
4.
Nat Genet ; 55(2): 246-254, 2023 02.
Article En | MEDLINE | ID: mdl-36702998

APOBEC mutational signatures SBS2 and SBS13 are common in many human cancer types. However, there is an incomplete understanding of its stimulus, when it occurs in the progression from normal to cancer cell and the APOBEC enzymes responsible. Here we whole-genome sequenced 342 microdissected normal epithelial crypts from the small intestines of 39 individuals and found that SBS2/SBS13 mutations were present in 17% of crypts, more frequent than most other normal tissues. Crypts with SBS2/SBS13 often had immediate crypt neighbors without SBS2/SBS13, suggesting that the underlying cause of SBS2/SBS13 is cell-intrinsic. APOBEC mutagenesis occurred in an episodic manner throughout the human lifespan, including in young children. APOBEC1 mRNA levels were very high in the small intestine epithelium, but low in the large intestine epithelium and other tissues. The results suggest that the high levels of SBS2/SBS13 in the small intestine are collateral damage from APOBEC1 fulfilling its physiological function of editing APOB mRNA.


Apolipoproteins B , Cytidine Deaminase , Child , Humans , Child, Preschool , Apolipoproteins B/genetics , Cytidine Deaminase/genetics , Mutagenesis/genetics , RNA, Messenger/genetics , APOBEC-1 Deaminase/genetics , Intestine, Small
5.
Vascular ; 30(5): 842-847, 2022 Oct.
Article En | MEDLINE | ID: mdl-34281442

BACKGROUND: Visceral artery aneurysms (VAAs) can be fatal if ruptured. Although a relatively rare incident, it holds a contemporary mortality rate of approximately 12%. VAAs have multiple possible causes, one of which is genetic predisposition. Here, we present a striking family with seven individuals affected by VAAs, and one individual affected by a visceral artery pseudoaneurysm. METHODS: We exome sequenced the affected family members and the parents of the proband to find a possible underlying genetic defect. As exome sequencing did not reveal any feasible protein-coding variants, we combined whole-genome sequencing of two individuals with linkage analysis to find a plausible non-coding culprit variant. Variants were ranked by the deep learning framework DeepSEA. RESULTS: Two of seven top-ranking variants, NC_000013.11:g.108154659C>T and NC_000013.11:g.110409638C>T, were found in all VAA-affected individuals, but not in the individual affected by the pseudoaneurysm. The second variant is in a candidate cis-regulatory element in the fourth intron of COL4A2, proximal to COL4A1. CONCLUSIONS: As type IV collagens are essential for the stability and integrity of the vascular basement membrane and involved in vascular disease, we conclude that COL4A1 and COL4A2 are strong candidates for VAA susceptibility genes.


Aneurysm, False , Aneurysm , Collagen Type IV , Aneurysm/etiology , Arteries , Collagen Type IV/genetics , High-Throughput Nucleotide Sequencing , Humans , Pedigree
6.
J Med Genet ; 59(7): 644-651, 2022 07.
Article En | MEDLINE | ID: mdl-34281993

BACKGROUND: Genes involved in epigenetic regulation are central for chromatin structure and gene expression. Specific mutations in these might promote carcinogenesis in several tissue types. METHODS: We used exome, whole-genome and Sanger sequencing to detect rare variants shared by seven affected individuals in a striking early-onset multi-cancer family. The only variant that segregated with malignancy resided in a histone demethylase KDM4C. Consequently, we went on to study the epigenetic landscape of the mutation carriers with ATAC, ChIP (chromatin immunoprecipitation) and RNA-sequencing from lymphoblastoid cell lines to identify possible pathogenic effects. RESULTS: A novel variant in KDM4C, encoding a H3K9me3 histone demethylase and transcription regulator, was found to segregate with malignancy in the family. Based on Roadmap Epigenomics Project data, differentially accessible chromatin regions between the variant carriers and controls enrich to normally H3K9me3-marked chromatin. We could not detect a difference in global H3K9 trimethylation levels. However, carriers of the variant seemed to have more trimethylated H3K9 at transcription start sites. Pathway analyses of ChIP-seq and differential gene expression data suggested that genes regulated through KDM4C interaction partner EZH2 and its interaction partner PLZF are aberrantly expressed in mutation carriers. CONCLUSIONS: The apparent dysregulation of H3K9 trimethylation and KDM4C-associated genes in lymphoblastoid cells supports the hypothesis that the KDM4C variant is causative of the multi-cancer susceptibility in the family. As the variant is ultrarare, located in the conserved catalytic JmjC domain and predicted pathogenic by the majority of available in silico tools, further studies on the role of KDM4C in cancer predisposition are warranted.


Histone Demethylases , Jumonji Domain-Containing Histone Demethylases , Neoplasms , Chromatin/genetics , Epigenesis, Genetic , Germ Cells/metabolism , Germ Cells/pathology , Histone Demethylases/genetics , Histones/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Neoplasms/genetics , Phenotype
7.
Oral Oncol ; 124: 105663, 2022 01.
Article En | MEDLINE | ID: mdl-34915258

We explored somatic mutations in dysplastic sinonasal inverted papilloma (SNIP), SNIP with concomitant sinonasal squamous cell carcinoma (SNSCC), and SNSCC without preceding SNIP. Ten SNIP and SNSCC samples were analyzed with exome sequencing and tested for human papillomavirus. The identified mutations were compared to the most frequently mutated genes in head and neck squamous cell carcinoma (HNSCC) in the COSMIC database. Exome sequencing data were also analyzed for mutations not previously linked to SNSCC. Seven of the most commonly mutated genes in HNSCC and SNSCC in COSMIC harbored mutations in our data. In addition, we identified mutations in 23 genes that are likely to contribute to SNIP and SNSCC oncogenesis.


Carcinoma, Squamous Cell , Papilloma, Inverted , Paranasal Sinus Neoplasms , Carcinoma, Squamous Cell/pathology , Cell Transformation, Neoplastic/genetics , Exome , Humans , Mutation , Papilloma, Inverted/genetics , Paranasal Sinus Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/genetics
8.
Hum Mol Genet ; 30(24): 2429-2440, 2021 11 30.
Article En | MEDLINE | ID: mdl-34274970

Many hereditary cancer syndromes are associated with an increased risk of small and large intestinal adenocarcinomas. However, conditions bearing a high risk to both adenocarcinomas and neuroendocrine tumors are yet to be described. We studied a family with 16 individuals in four generations affected by a wide spectrum of intestinal tumors, including hyperplastic polyps, adenomas, small intestinal neuroendocrine tumors, and colorectal and small intestinal adenocarcinomas. To assess the genetic susceptibility and understand the novel phenotype, we utilized multiple molecular methods, including whole genome sequencing, RNA sequencing, single cell sequencing, RNA in situ hybridization and organoid culture. We detected a heterozygous deletion at the cystic fibrosis locus (7q31.2) perfectly segregating with the intestinal tumor predisposition in the family. The deletion removes a topologically associating domain border between CFTR and WNT2, aberrantly activating WNT2 in the intestinal epithelium. These consequences suggest that the deletion predisposes to small intestinal neuroendocrine tumors and small and large intestinal adenocarcinomas, and reveals the broad tumorigenic effects of aberrant WNT activation in the human intestine.


Adenocarcinoma , Adenoma , Colorectal Neoplasms , Neuroendocrine Tumors , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenoma/genetics , Adenoma/pathology , Colorectal Neoplasms/genetics , Humans , Intestinal Mucosa/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Wnt2 Protein
9.
Gastroenterology ; 161(2): 592-607, 2021 08.
Article En | MEDLINE | ID: mdl-33930428

BACKGROUND & AIMS: Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder associated with an elevated risk of colorectal cancer (CRC). IBD-associated CRC (IBD-CRC) may represent a distinct pathway of tumorigenesis compared to sporadic CRC (sCRC). Our aim was to comprehensively characterize IBD-associated tumorigenesis integrating multiple high-throughput approaches, and to compare the results with in-house data sets from sCRCs. METHODS: Whole-genome sequencing, single nucleotide polymorphism arrays, RNA sequencing, genome-wide methylation analysis, and immunohistochemistry were performed using fresh-frozen and formalin-fixed tissue samples of tumor and corresponding normal tissues from 31 patients with IBD-CRC. RESULTS: Transcriptome-based tumor subtyping revealed the complete absence of canonical epithelial tumor subtype associated with WNT signaling in IBD-CRCs, dominated instead by mesenchymal stroma-rich subtype. Negative WNT regulators AXIN2 and RNF43 were strongly down-regulated in IBD-CRCs and chromosomal gains at HNF4A, a negative regulator of WNT-induced epithelial-mesenchymal transition (EMT), were less frequent compared to sCRCs. Enrichment of hypomethylation at HNF4α binding sites was detected solely in sCRC genomes. PIGR and OSMR involved in mucosal immunity were dysregulated via epigenetic modifications in IBD-CRCs. Genome-wide analysis showed significant enrichment of noncoding mutations to 5'untranslated region of TP53 in IBD-CRCs. As reported previously, somatic mutations in APC and KRAS were less frequent in IBD-CRCs compared to sCRCs. CONCLUSIONS: Distinct mechanisms of WNT pathway dysregulation skew IBD-CRCs toward mesenchymal tumor subtype, which may affect prognosis and treatment options. Increased OSMR signaling may favor the establishment of mesenchymal tumors in patients with IBD.


Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/genetics , Colitis-Associated Neoplasms/genetics , DNA Methylation , Epigenesis, Genetic , Inflammatory Bowel Diseases/genetics , Transcriptome , Adult , Aged , Aged, 80 and over , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/pathology , Colitis-Associated Neoplasms/immunology , Colitis-Associated Neoplasms/pathology , DNA Mutational Analysis , Epigenomics , Female , Finland , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Male , Middle Aged , Mutation , Neoplasm Grading , Neoplasm Staging , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Sequence Analysis, RNA , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Whole Genome Sequencing
10.
Genes Chromosomes Cancer ; 60(7): 463-473, 2021 07.
Article En | MEDLINE | ID: mdl-33527622

Microsatellite instability (MSI) is caused by defective DNA mismatch repair (MMR), and manifests as accumulation of small insertions and deletions (indels) in short tandem repeats of the genome. Another form of repeat instability, elevated microsatellite alterations at selected tetranucleotide repeats (EMAST), has been suggested to occur in 50% to 60% of colorectal cancer (CRC), of which approximately one quarter are accounted for by MSI. Unlike for MSI, the criteria for defining EMAST is not consensual. EMAST CRCs have been suggested to form a distinct subset of CRCs that has been linked to a higher tumor stage, chronic inflammation, and poor prognosis. EMAST CRCs not exhibiting MSI have been proposed to show instability of di- and trinucleotide repeats in addition to tetranucleotide repeats, but lack instability of mononucleotide repeats. However, previous studies on EMAST have been based on targeted analysis of small sets of marker repeats, often in relatively few samples. To gain insight into tetranucleotide instability on a genome-wide level, we utilized whole genome sequencing data from 227 microsatellite stable (MSS) CRCs, 18 MSI CRCs, 3 POLE-mutated CRCs, and their corresponding normal samples. As expected, we observed tetranucleotide instability in all MSI CRCs, accompanied by instability of mono-, di-, and trinucleotide repeats. Among MSS CRCs, some tumors displayed more microsatellite mutations than others as a continuum, and no distinct subset of tumors with the previously proposed molecular characters of EMAST could be observed. Our results suggest that tetranucleotide repeat mutations in non-MSI CRCs represent stochastic mutation events rather than define a distinct CRC subclass.


Colorectal Neoplasms/genetics , Genetic Testing/methods , INDEL Mutation , Microsatellite Repeats , Whole Genome Sequencing/methods , Genetic Testing/statistics & numerical data , Humans , Whole Genome Sequencing/statistics & numerical data
11.
Nat Med ; 26(7): 1063-1069, 2020 07.
Article En | MEDLINE | ID: mdl-32483361

The mucosal epithelium is a common target of damage by chronic bacterial infections and the accompanying toxins, and most cancers originate from this tissue. We investigated whether colibactin, a potent genotoxin1 associated with certain strains of Escherichia coli2, creates a specific DNA-damage signature in infected human colorectal cells. Notably, the genomic contexts of colibactin-induced DNA double-strand breaks were enriched for an AT-rich hexameric sequence motif, associated with distinct DNA-shape characteristics. A survey of somatic mutations at colibactin target sites of several thousand cancer genomes revealed notable enrichment of this motif in colorectal cancers. Moreover, the exact double-strand-break loci corresponded with mutational hot spots in cancer genomes, reminiscent of a trinucleotide signature previously identified in healthy colorectal epithelial cells3. The present study provides evidence for the etiological role of colibactin in human cancer.


Colorectal Neoplasms/genetics , DNA Breaks, Double-Stranded/drug effects , DNA Damage/drug effects , Peptides/pharmacology , Polyketides/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Epithelial Cells/drug effects , Escherichia coli/pathogenicity , Humans , Mutation/drug effects , Nucleotide Motifs/drug effects
12.
PLoS Genet ; 16(2): e1008572, 2020 02.
Article En | MEDLINE | ID: mdl-32012149

Cancer genomes with mutations in the exonuclease domain of Polymerase Epsilon (POLE) present with an extraordinarily high somatic mutation burden. In vitro studies have shown that distinct POLE mutants exhibit different polymerase activity. Yet, genome-wide mutation patterns and driver mutation formation arising from different POLE mutants remains unclear. Here, we curated somatic mutation calls from 7,345 colorectal cancer samples from published studies and publicly available databases. These include 44 POLE mutant samples including 9 with whole genome sequencing data available. The POLE mutant samples were categorized based on the specific POLE mutation present. Mutation spectrum, associations of somatic mutations with epigenomics features and co-occurrence with specific driver mutations were examined across different POLE mutants. We found that different POLE mutants exhibit distinct mutation spectrum with significantly higher relative frequency of C>T mutations in POLE V411L mutants. Our analysis showed that this increase frequency in C>T mutations is not dependent on DNA methylation and not associated with other genomic features and is thus specifically due to DNA sequence context alone. Notably, we found strong association of the TP53 R213* mutation specifically with POLE P286R mutants. This truncation mutation occurs within the TT[C>T]GA context. For C>T mutations, this sequence context is significantly more likely to be mutated in POLE P286R mutants compared with other POLE exonuclease domain mutants. This study refines our understanding of DNA polymerase fidelity and underscores genome-wide mutation spectrum and specific cancer driver mutation formation observed in POLE mutant cancers.


Carcinogenesis/genetics , Colorectal Neoplasms/genetics , DNA Polymerase II/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Domains/genetics , Tumor Suppressor Protein p53/genetics , CpG Islands/genetics , Cytosine/metabolism , DNA Methylation/genetics , DNA Mutational Analysis/statistics & numerical data , DNA Polymerase II/genetics , Databases, Genetic/statistics & numerical data , Datasets as Topic , Epigenesis, Genetic , Humans , Mutation , Poly-ADP-Ribose Binding Proteins/genetics , Whole Genome Sequencing/statistics & numerical data
13.
Nat Commun ; 10(1): 4022, 2019 09 06.
Article En | MEDLINE | ID: mdl-31492840

Genomic instability pathways in colorectal cancer (CRC) have been extensively studied, but the role of retrotransposition in colorectal carcinogenesis remains poorly understood. Although retrotransposons are usually repressed, they become active in several human cancers, in particular those of the gastrointestinal tract. Here we characterize retrotransposon insertions in 202 colorectal tumor whole genomes and investigate their associations with molecular and clinical characteristics. We find highly variable retrotransposon activity among tumors and identify recurrent insertions in 15 known cancer genes. In approximately 1% of the cases we identify insertions in APC, likely to be tumor-initiating events. Insertions are positively associated with the CpG island methylator phenotype and the genomic fraction of allelic imbalance. Clinically, high number of insertions is independently associated with poor disease-specific survival.


Colorectal Neoplasms/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Long Interspersed Nucleotide Elements/genetics , Mutagenesis, Insertional , Aged , Caco-2 Cells , Carcinogenesis/genetics , Cell Line, Tumor , Colorectal Neoplasms/pathology , CpG Islands/genetics , DNA Methylation , Female , Genomic Instability , Humans , Kaplan-Meier Estimate , Male , Middle Aged
14.
Nat Commun ; 10(1): 1252, 2019 03 19.
Article En | MEDLINE | ID: mdl-30890702

Clonal hematopoiesis driven by somatic heterozygous TET2 loss is linked to malignant degeneration via consequent aberrant DNA methylation, and possibly to cardiovascular disease via increased cytokine and chemokine expression as reported in mice. Here, we discover a germline TET2 mutation in a lymphoma family. We observe neither unusual predisposition to atherosclerosis nor abnormal pro-inflammatory cytokine or chemokine expression. The latter finding is confirmed in cells from three additional unrelated TET2 germline mutation carriers. The TET2 defect elevates blood DNA methylation levels, especially at active enhancers and cell-type specific regulatory regions with binding sequences of master transcription factors involved in hematopoiesis. The regions display reduced methylation relative to all open chromatin regions in four DNMT3A germline mutation carriers, potentially due to TET2-mediated oxidation. Our findings provide insight into the interplay between epigenetic modulators and transcription factor activity in hematological neoplasia, but do not confirm the putative role of TET2 in atherosclerosis.


Atherosclerosis/genetics , DNA Methylation/genetics , DNA-Binding Proteins/genetics , Haploinsufficiency , Hodgkin Disease/genetics , Proto-Oncogene Proteins/genetics , Adult , Atherosclerosis/pathology , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , DNA-Binding Proteins/metabolism , Dioxygenases , Epigenesis, Genetic , Female , Finland , Genetic Predisposition to Disease , Germ-Line Mutation , Hematopoiesis/genetics , Hodgkin Disease/blood , Hodgkin Disease/pathology , Humans , Male , Phenotype , Primary Cell Culture , Proto-Oncogene Proteins/metabolism , RNA, Small Interfering/metabolism , Whole Genome Sequencing
15.
Br J Cancer ; 120(9): 922-930, 2019 04.
Article En | MEDLINE | ID: mdl-30894686

BACKGROUND: Approximately 4% of colorectal cancer (CRC) patients have at least two simultaneous cancers in the colon. Due to the shared environment, these synchronous CRCs (SCRCs) provide a unique setting to study colorectal carcinogenesis. Understanding whether these tumours are genetically similar or distinct is essential when designing therapeutic approaches. METHODS: We performed exome sequencing of 47 primary cancers and corresponding normal samples from 23 patients. Additionally, we carried out a comprehensive mutational signature analysis to assess whether tumours had undergone similar mutational processes and the first immune cell score analysis (IS) of SCRC to analyse the interplay between immune cell invasion and mutation profile in both lesions of an individual. RESULTS: The tumour pairs shared only few mutations, favouring different mutations in known CRC genes and signalling pathways and displayed variation in their signature content. Two tumour pairs had discordant mismatch repair statuses. In majority of the pairs, IS varied between primaries. Differences were not explained by any clinicopathological variable or mutation burden. CONCLUSIONS: The study shows major diversity within SCRCs. Rather than rely on data from one tumour, our study highlights the need to evaluate both tumours of a synchronous pair for optimised targeted therapy.


Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Lymphocytes/immunology , Neoplasms, Multiple Primary/genetics , Neoplasms, Multiple Primary/immunology , Aged , Aged, 80 and over , CD3 Complex/immunology , CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Case-Control Studies , Colorectal Neoplasms/pathology , DNA Mutational Analysis , Exome/genetics , Exome/immunology , Female , Humans , Lymphocytes/pathology , Male , Microsatellite Instability , Middle Aged , Mutation , Neoplasms, Multiple Primary/pathology
16.
Fam Cancer ; 18(1): 113-119, 2019 01.
Article En | MEDLINE | ID: mdl-30097855

Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of peripheral T-cell lymphoma with a poor prognosis: the 5-year survival rate is approximately 30%. Somatic driver mutations have been found in TET2, IDH2, DNMT3A, RHOA, FYN, PLCG1, and CD28, whereas germline susceptibility to AITL has to our knowledge not been studied. The homogenous Finnish population is well suited for studies on genetic predisposition. Here, we performed an exome-wide rare variant analysis in 23 AITL patients. No germline mutations were found in the driver genes, implying that they are not frequently involved in genetic AITL predisposition. Potentially pathogenic variants present in at least two patients and showing significant (p < 0.01) enrichment in our sample set were found in ten genes: POLK, PRKCB, ZNF676, PRRC2B, PCDHGB6, GNL3L, TTC36, OTOG, OSGEPL1, and RASSF9. The most significantly enriched variants, causing p.Lys469Ter in a splice variant of POLK and p.Pro588His in PRKCB, are intriguing candidates as Polk deficient mice display a spontaneous mutator phenotype, whereas PRKCB was recently shown to be somatically mutated in 33% of another peripheral T-cell lymphoma, adult T-cell lymphoma. If validated, our findings would provide new insight into the pathogenesis of AITL, as well as tools for early detection in susceptible individuals.


DNA Mutational Analysis , Genetic Predisposition to Disease , Lymphoma, T-Cell, Peripheral/genetics , Adult , Aged , Aged, 80 and over , Female , Germ-Line Mutation , Humans , Lymphoma, T-Cell, Peripheral/mortality , Male , Middle Aged , Exome Sequencing
17.
Nat Protoc ; 13(11): 2580-2600, 2018 11.
Article En | MEDLINE | ID: mdl-30323186

Next-generation sequencing (NGS) is routinely applied in life sciences and clinical practice, but interpretation of the massive quantities of genomic data produced has become a critical challenge. The genome-wide mutation analyses enabled by NGS have had a revolutionary impact in revealing the predisposing and driving DNA alterations behind a multitude of disorders. The workflow to identify causative mutations from NGS data, for example in cancer and rare diseases, commonly involves phases such as quality filtering, case-control comparison, genome annotation, and visual validation, which require multiple processing steps and usage of various tools and scripts. To this end, we have introduced an interactive and user-friendly multi-platform-compatible software, BasePlayer, which allows scientists, regardless of bioinformatics training, to carry out variant analysis in disease genetics settings. A genome-wide scan of regulatory regions for mutation clusters can be carried out with a desktop computer in ~10 min with a dataset of 3 million somatic variants in 200 whole-genome-sequenced (WGS) cancers.


DNA Mutational Analysis/methods , DNA, Neoplasm/genetics , Genome, Human , Mutation , Neoplasms/genetics , Software , Base Sequence , Computational Biology , DNA, Intergenic , Exome , Genetics, Medical/methods , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , Neoplasms/diagnosis , Neoplasms/pathology , Whole Genome Sequencing
18.
Nat Commun ; 9(1): 3664, 2018 09 10.
Article En | MEDLINE | ID: mdl-30202008

Point mutations in cancer have been extensively studied but chromosomal gains and losses have been more challenging to interpret due to their unspecific nature. Here we examine high-resolution allelic imbalance (AI) landscape in 1699 colorectal cancers, 256 of which have been whole-genome sequenced (WGSed). The imbalances pinpoint 38 genes as plausible AI targets based on previous knowledge. Unbiased CRISPR-Cas9 knockout and activation screens identified in total 79 genes within AI peaks regulating cell growth. Genetic and functional data implicate loss of TP53 as a sufficient driver of AI. The WGS highlights an influence of copy number aberrations on the rate of detected somatic point mutations. Importantly, the data reveal several associations between AI target genes, suggesting a role for a network of lineage-determining transcription factors in colorectal tumorigenesis. Overall, the results unravel the contribution of AI in colorectal cancer and provide a plausible explanation why so few genes are commonly affected by point mutations in cancers.


Allelic Imbalance , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , CRISPR-Cas Systems , Chromosome Aberrations , Chromosomes, Human, Pair 8 , Colorectal Neoplasms/pathology , DNA Copy Number Variations , Denmark , Gene Expression Profiling , Genomics , Genotype , Humans , Loss of Heterozygosity , Microsatellite Repeats , Phenotype , Point Mutation , Proto-Oncogene Proteins p21(ras)/genetics , RNA, Small Interfering/genetics , Transcription Factors/genetics , Tumor Suppressor Protein p53/genetics , Whole Genome Sequencing
19.
EMBO Mol Med ; 10(9)2018 09.
Article En | MEDLINE | ID: mdl-30108113

Microsatellite instability (MSI) leads to accumulation of an excessive number of mutations in the genome, mostly small insertions and deletions. MSI colorectal cancers (CRCs), however, also contain more point mutations than microsatellite-stable (MSS) tumors, yet they have not been as comprehensively studied. To identify candidate driver genes affected by point mutations in MSI CRC, we ranked genes based on mutation significance while correcting for replication timing and gene expression utilizing an algorithm, MutSigCV Somatic point mutation data from the exome kit-targeted area from 24 exome-sequenced sporadic MSI CRCs and respective normals, and 12 whole-genome-sequenced sporadic MSI CRCs and respective normals were utilized. The top 73 genes were validated in 93 additional MSI CRCs. The MutSigCV ranking identified several well-established MSI CRC driver genes and provided additional evidence for previously proposed CRC candidate genes as well as shortlisted genes that have to our knowledge not been linked to CRC before. Two genes, SMARCB1 and STK38L, were also functionally scrutinized, providing evidence of a tumorigenic role, for SMARCB1 mutations in particular.


Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Microsatellite Instability , Point Mutation , Gene Regulatory Networks , Humans , Molecular Sequence Annotation , Sequence Analysis, DNA
20.
Lung Cancer ; 122: 76-82, 2018 08.
Article En | MEDLINE | ID: mdl-30032850

OBJECTIVES: Although the primary cause of lung cancer is smoking, a considerable proportion of all lung cancers occur in never smokers. Gender influences the risk and characteristics of lung cancer and women are overrepresented among never smokers with the disease. Young age at onset and lack of established environmental risk factors suggest genetic predisposition. In this study, we used population-based sampling of young patients to discover candidate predisposition variants for lung adenocarcinoma in never-smoking women. MATERIALS AND METHODS: We employed archival normal tissue material from 21 never-smoker women who had been diagnosed with lung adenocarcinoma before the age of 45, and exome sequenced their germline DNA. RESULTS AND CONCLUSION: Potentially pathogenic variants were found in eight Cancer Gene Census germline genes: BRCA1, BRCA2, ERCC4, EXT1, HNF1 A, PTCH1, SMARCB1 and TP53. The variants in TP53, BRCA1, and BRCA2 are likely to have contributed to the early onset lung cancer in the respective patients (3/21 or 14%). This supports the notion that lung adenocarcinoma can be a component of certain cancer predisposition syndromes. Fifteen genes displayed potentially pathogenic mutations in at least two patients: ABCC10, ATP7B, CACNA1S, CFTR, CLIP4, COL6A1, COL6A6, GCN1, GJB6, RYR1, SCN7A, SEC24A, SP100, TTN and USH2A. Four patients showed a mutation in COL6A1, three in CLIP4 and two in the rest of the genes. Some of these candidate genes may explain a subset of female lung adenocarcinoma.


Adenocarcinoma of Lung/genetics , Genotype , Germ-Line Mutation/genetics , Lung Neoplasms/genetics , Adenocarcinoma of Lung/diagnosis , Adult , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Carrier Proteins/genetics , Cigarette Smoking , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , Humans , Lung Neoplasms/diagnosis , Membrane Proteins , Exome Sequencing , Young Adult
...