Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Microbiol ; 14: 1258452, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901831

RESUMEN

Motile bacteria take a competitive advantage in colonization of plant surfaces to establish beneficial associations that eventually support plant health. Plant exudates serve not only as primary growth substrates for bacteria but also as bacterial chemotaxis attractants. A number of plant-derived compounds and corresponding chemotaxis sensors have been documented, however, the sensors for methanol, one of the major volatile compounds released by plants, have not been identified. Methylobacterium species are ubiquitous plant surface-symbiotic, methylotrophic bacteria. A plant-growth promoting bacterium, M. aquaticum strain 22A exhibits chemotaxis toward methanol (methylotaxis). Its genome encodes 52 methyl-accepting chemotaxis proteins (MCPs), among which we identified three MCPs (methylotaxis proteins, MtpA, MtpB, and MtpC) responsible for methylotaxis. The triple gene mutant of the MCPs exhibited no methylotaxis, slower gathering to plant tissues, and less efficient colonization on plants than the wild type, suggesting that the methylotaxis mediates initiation of plant-Methylobacterium symbiosis and engages in proliferation on plants. To examine how these MCPs are operating methylotaxis, we generated multiple gene knockouts of the MCPs, and Ca2+-dependent MxaFI and lanthanide (Ln3+)-dependent XoxF methanol dehydrogenases (MDHs), whose expression is regulated by the presence of Ln3+. MtpA was found to be a cytosolic sensor that conducts formaldehyde taxis (formtaxis), as well as methylotaxis when MDHs generate formaldehyde. MtpB contained a dCache domain and exhibited differential cellular localization in response to La3+. MtpB expression was induced by La3+, and its activity required XoxF1. MtpC exhibited typical cell pole localization, required MxaFI activity, and was regulated under MxbDM that is also required for MxaF expression. Strain 22A methylotaxis is realized by three independent MCPs, two of which monitor methanol oxidation by Ln3+-regulated MDHs, and one of which monitors the common methanol oxidation product, formaldehyde. We propose that methanol metabolism-linked chemotaxis is the key factor for the efficient colonization of Methylobacterium on plants.

2.
J Dermatol ; 50(12): 1585-1593, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37752805

RESUMEN

Laminin332 is a glycoprotein consisting of α3/ß3/γ2 chains, of which the γ2 chain (Ln-γ2) is expressed in tumor cells at the invasive front in many types of malignant tumors. We have previously reported that Ln-γ2 is associated with tumor invasion of cutaneous squamous cell carcinoma (cSCC) in vivo and in vitro. Recently, tumor budding (TB; invasion patterns in small clusters of less than five cancer cells in the stroma at the invasive front) has been reported to be a risk factor for lymph node metastasis in cSCC. Based on these findings, we speculated that expression of Ln-γ2 is related to TB in cSCC and would be an invasive factor that causes lymph node metastasis. In this study, we investigated the relationship between Ln-γ2 expression and clinicopathological findings, including TB, in 102 cases of cSCC using immunohistochemistry. The results showed that high expression of Ln-γ2 at the invasive front correlated with a high TB score. In addition, high Ln-γ2 expression at the invasive front was also associated with lymphatic invasion, lymph node metastasis, and poor prognosis (death or recurrence), as in TB. Furthermore, we showed a positive association between Ln-γ2 expression at the invasive front and Yes-associated protein (YAP) expression in the Hippo pathway. Our results suggest that Ln-γ2 expression at the invasive front may have a role in TB formation via YAP and contribute to prognosis by causing lymphatic invasion and lymph node metastasis. The expression of Ln-γ2 would be useful for risk assessment of lymph node metastasis and poor prognosis in routine practice of cSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Carcinoma de Células Escamosas/patología , Metástasis Linfática , Pronóstico , Inmunohistoquímica , Invasividad Neoplásica
3.
J Biosci Bioeng ; 132(3): 247-252, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34092492

RESUMEN

Methylotrophic bacterium Methylorubrum extorquens is a promising microorganism for the production of value-added compounds from methanol. This study focused on the development of a single-cell level biosensor system that detects methanol by using the intrinsic regulatory machinery which responds to the presence of methanol in this bacterium. A green fluorescent protein (GFP) gene located downstream of the promoter region of the serine glyoxylate aminotransferase gene (Psga) or the methanol dehydrogenase subunit 1 precursor gene (PmxaF) was inserted into the chromosome of M. extorquens wild-type strain AM1. The expression of GFP upon methanol exposure was measured by spectrofluorometer and fluorescence-activated cell sorting (FACS). The strain harboring Psga-gfp emitted fluorescence only when methanol was supplied to the culture medium, while the other strain harboring PmxaF-gfp showed high basal fluorescence even in the absence of methanol. The fluorescence intensity of the Psga-gfp strain depended on a methanol concentration higher than 25 µM, and the sensitivity and dose-dependency of this strain were much higher than previous systems using Escherichia coli. The methanol-sensing properties of the engineered M. extorquens strain were comparable to those of a methylotrophic yeast-based biosensor, suggesting the usefulness of methylotrophic microorganisms as platforms for single-cell sensing of C1 compounds. The constructed methanol sensor strain, coupled with flow cytometry techniques, provides a high-throughput and highly sensitive screening method for the selection of functional methanol-producing enzymes.


Asunto(s)
Metanol , Methylobacterium extorquens , Proteínas Fluorescentes Verdes/genética
5.
Nucleic Acids Res ; 45(8): 4344-4358, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28334937

RESUMEN

Although studies of the differentiation from mouse embryonic stem (ES) cells to vascular endothelial cells (ECs) provide an excellent model for investigating the molecular mechanisms underlying vascular development, temporal dynamics of gene expression and chromatin modifications have not been well studied. Herein, using transcriptomic and epigenomic analyses based on H3K4me3 and H3K27me3 modifications at a genome-wide scale, we analysed the EC differentiation steps from ES cells and crucial epigenetic modifications unique to ECs. We determined that Gata2, Fli1, Sox7 and Sox18 are master regulators of EC that are induced following expression of the haemangioblast commitment pioneer factor, Etv2. These master regulator gene loci were repressed by H3K27me3 throughout the mesoderm period but rapidly transitioned to histone modification switching from H3K27me3 to H3K4me3 after treatment with vascular endothelial growth factor. SiRNA knockdown experiments indicated that these regulators are indispensable not only for proper EC differentiation but also for blocking the commitment to other closely aligned lineages. Collectively, our detailed epigenetic analysis may provide an advanced model for understanding temporal regulation of chromatin signatures and resulting gene expression profiles during EC commitment. These studies may inform the future development of methods to stimulate the vascular endothelium for regenerative medicine.


Asunto(s)
Células Endoteliales/metabolismo , Epigénesis Genética , Factor de Transcripción GATA2/genética , Histonas/genética , Células Madre Embrionarias de Ratones/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Factores de Transcripción SOXF/genética , Animales , Diferenciación Celular , Linaje de la Célula/genética , Células Endoteliales/citología , Factor de Transcripción GATA2/antagonistas & inhibidores , Factor de Transcripción GATA2/metabolismo , Histonas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Cultivo Primario de Células , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Proto-Oncogénica c-ets-1/antagonistas & inhibidores , Proteína Proto-Oncogénica c-ets-1/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción SOXF/antagonistas & inhibidores , Factores de Transcripción SOXF/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Sci Rep ; 5: 16842, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26585309

RESUMEN

Poor engraftment of cells after transplantation to the heart is a common and unresolved problem in the cardiac cell therapies. We previously generated cardiovascular cell sheets entirely from pluripotent stem cells with cardiomyocytes, endothelial cells and vascular mural cells. Though sheet transplantation showed a better engraftment and improved cardiac function after myocardial infarction, stacking limitation (up to 3 sheets) by hypoxia hampered larger structure formation and long-term survival of the grafts. Here we report an efficient method to overcome the stacking limitation. Insertion of gelatin hydrogel microspheres (GHMs) between each cardiovascular cell sheet broke the viable limitation via appropriate spacing and fluid impregnation with GHMs. Fifteen sheets with GHMs (15-GHM construct; >1 mm thickness) were stacked within several hours and viable after 1 week in vitro. Transplantation of 5-GHM constructs (≈2 × 10(6) of total cells) to a rat myocardial infarction model showed rapid and sustained functional improvements. The grafts were efficiently engrafted as multiple layered cardiovascular cells accompanied by functional capillary networks. Large engrafted cardiac tissues (0.8 mm thickness with 40 cell layers) successfully survived 3 months after TX. We developed an efficient method to generate thicker viable tissue structures and achieve long-term survival of the cell graft to the heart.


Asunto(s)
Trasplante de Células/métodos , Células Endoteliales/citología , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Gelatina/metabolismo , Supervivencia de Injerto , Pruebas de Función Cardíaca , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Hibridación Fluorescente in Situ , Masculino , Ratones Endogámicos NOD , Ratones SCID , Microscopía Confocal , Microesferas , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo , Ratas Endogámicas F344 , Ratas Desnudas , Factores de Tiempo , Ingeniería de Tejidos/métodos , Trasplante Heterólogo
7.
Sci Rep ; 4: 6716, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25336194

RESUMEN

To realize cardiac regeneration using human induced pluripotent stem cells (hiPSCs), strategies for cell preparation, tissue engineering and transplantation must be explored. Here we report a new protocol for the simultaneous induction of cardiomyocytes (CMs) and vascular cells [endothelial cells (ECs)/vascular mural cells (MCs)], and generate entirely hiPSC-engineered cardiovascular cell sheets, which showed advantageous therapeutic effects in infarcted hearts. The protocol adds to a previous differentiation protocol of CMs by using stage-specific supplementation of vascular endothelial cell growth factor for the additional induction of vascular cells. Using this cell sheet technology, we successfully generated physically integrated cardiac tissue sheets (hiPSC-CTSs). HiPSC-CTS transplantation to rat infarcted hearts significantly improved cardiac function. In addition to neovascularization, we confirmed that engrafted human cells mainly consisted of CMs in >40% of transplanted rats four weeks after transplantation. Thus, our HiPSC-CTSs show promise for cardiac regenerative therapy.


Asunto(s)
Corazón , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Regeneración , Animales , Diferenciación Celular/genética , Células Endoteliales/citología , Células Endoteliales/trasplante , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocitos Cardíacos/trasplante , Ratas , Ingeniería de Tejidos
8.
Sci Rep ; 3: 3213, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24225480

RESUMEN

Opioids are effective analgesics for the management of moderate to severe cancer pain. Here we show that κ opioid receptor (KOR) agonists act as anti-angiogenic factors in tumors. Treatment with KOR agonists, U50,488H and TRK820, significantly inhibited human umbilical vein endothelial cell (HUVEC) migration and tube formation by suppressing VEGFR2 expression. In contrast, treatment with a µ opioid receptor agonist, DAMGO, or a δ opioid receptor agonist, SNC80, did not prevent angiogenesis in HUVECs. Lewis lung carcinoma (LLC) or B16 melanoma grafted in KOR knockout mice showed increased proliferation and remarkably enhanced tumor angiogenesis compared with those in wild type mice. On the other hand, repeated intraperitoneal injection of TRK820 (0.1-10 µg/kg, b.i.d.) significantly inhibited tumor growth by suppressing tumor angiogenesis. These findings indicate that KOR agonists play an important role in tumor angiogenesis and this knowledge could lead to a novel strategy for cancer therapy.


Asunto(s)
Analgésicos Opioides/farmacología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Receptores Opioides kappa/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacología , Animales , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Opioides kappa/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
9.
Cell Stem Cell ; 10(6): 759-770, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22704517

RESUMEN

Timing of cell differentiation is strictly controlled and is crucial for normal development and stem cell differentiation. However, underlying mechanisms regulating differentiation timing are fully unknown. Here, we show a molecular mechanism determining differentiation timing from mouse embryonic stem cells (ESCs). Activation of protein kinase A (PKA) modulates differentiation timing to accelerate the appearance of mesoderm and other germ layer cells, reciprocally correlated with the earlier disappearance of pluripotent markers after ESC differentiation. PKA activation increases protein expression of G9a, an H3K9 methyltransferase, along with earlier H3K9 dimethylation and DNA methylation in Oct3/4 and Nanog gene promoters. Deletion of G9a completely abolishes PKA-elicited acceleration of differentiation and epigenetic modification. Furthermore, G9a knockout mice show prolonged expressions of Oct3/4 and Nanog at embryonic day 7.5 and delayed development. In this study, we demonstrate molecular machinery that regulates timing of multilineage differentiation by linking signaling with epigenetics.


Asunto(s)
Diferenciación Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Metilación de ADN , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/fisiología , Animales , Western Blotting , Inmunoprecipitación de Cromatina , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Ratones , Ratones Noqueados , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Secuencias Reguladoras de Ácidos Nucleicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
10.
Stem Cells ; 30(6): 1196-205, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22438013

RESUMEN

Although stem cell therapy is a promising strategy for cardiac restoration, the heterogeneity of transplanted cells has been hampering the precise understanding of the cellular and molecular mechanisms. Previously, we established a cardiovascular cell differentiation system from mouse pluripotent stem cells, in which cardiomyocytes (CMs), endothelial cells (ECs), and mural cells (MCs) can be systematically induced and purified. Combining this with cell sheet technology, we generated cardiac tissue sheets reassembled with defined cardiovascular populations. Here, we show the potentials and mechanisms of cardiac tissue sheet transplantation in cardiac function after myocardial infarction (MI). Transplantation of the cardiac tissue sheet to a rat MI model showed significant and sustained improvement of systolic function accompanied by neovascularization. Reduction of the infarct wall thinning and fibrotic length indicated the attenuation of left ventricular remodeling. Cell tracing with species-specific fluorescent in situ hybridization after transplantation revealed a relatively early loss of transplanted cells and an increase in endogenous neovascularization in the proximity of the graft, suggesting an indirect angiogenic effect of cardiac tissue sheets rather than direct CM contributions. We prospectively dissected the functional mechanisms with cell type-controlled sheet analyses. Sheet CMs were the main source of vascular endothelial growth factor. Transplantation of sheets lacking CMs resulted in the disappearance of neovascularization and subsequent functional improvement, indicating that the beneficial effects of the sheet were achieved by sheet CMs. ECs and MCs enhanced the sheet functions and structural integration. Supplying CMs to ischemic regions with cellular interaction could be a strategic key in future cardiac cell therapy.


Asunto(s)
Infarto del Miocardio/cirugía , Miocitos Cardíacos/trasplante , Células Madre Pluripotentes/trasplante , Ingeniería de Tejidos/métodos , Animales , Vasos Coronarios/crecimiento & desarrollo , Modelos Animales de Enfermedad , Masculino , Ratones , Infarto del Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Neovascularización Fisiológica , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Estudios Prospectivos , Ratas , Ratas Desnudas , Trasplante de Células Madre/métodos
11.
Stem Cells ; 30(4): 687-96, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22267325

RESUMEN

Ets family protein Etv2 (also called ER71 or Etsrp) is a key factor for initiation of vascular and blood development from mesodermal cells. However, regulatory mechanisms and inducing signals for Etv2 expression have been largely unknown. Previously, we revealed that cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling enhanced differentiation of vascular progenitors into endothelial cells (ECs) and hematopoietic cells (HPCs) using an embryonic stem cell (ESC) differentiation system. Here, we show that PKA activation in an earlier differentiation stage can trigger EC/HPC differentiation through Etv2 induction. We found Etv2 was markedly upregulated by PKA activation preceding EC and HPC differentiation. We identified two cAMP response element (CRE) sequences in the Etv2 promoter and 5'-untranslated region and confirmed that CRE-binding protein (CREB) directly binds to the CRE sites and activates Etv2 transcription. Expression of a dominant negative form of CREB completely inhibited PKA-elicited Etv2 expression and induction of EC/HPCs from ESCs. Furthermore, blockade of PKA significantly inhibited Etv2 expression in ex vivo whole-embryo culture using Etv2-Venus knockin mice. These data indicated that PKA/CREB pathway is a critical regulator for the initiation of EC/HPC differentiation via Etv2 transcription. This early-stage molecular linkage between a triggering signal and transcriptional cascades for differentiation would provide novel insights in vascular and blood development and cell fate determination.


Asunto(s)
Diferenciación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Endoteliales/citología , Células Madre Hematopoyéticas/citología , Proteína Proto-Oncogénica c-ets-1/metabolismo , Transducción de Señal , Regiones no Traducidas 5'/genética , Animales , Secuencia de Bases , Línea Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Células Endoteliales/metabolismo , Activación Enzimática , Células Madre Hematopoyéticas/metabolismo , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Proteína Proto-Oncogénica c-ets-1/genética , ARN Interferente Pequeño/metabolismo , Técnicas de Cultivo de Tejidos , Transcripción Genética
12.
Blood ; 118(3): 775-85, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21460241

RESUMEN

The opioid system (opioid peptides and receptors) regulates a variety of neurophysiologic functions, including pain control. Here we show novel roles of the κ opioid system in vascular development. Previously, we revealed that cAMP/protein kinase A (PKA) signaling enhanced differentiation of vascular progenitors expressing VEGF receptor-2 (fetal liver kinase 1; Flk1) into endothelial cells (ECs) through dual up-regulation of Flk1 and Neuropilin1 (NRP1), which form a selective and sensitive VEGF(164) receptor. Kappa opioid receptor (KOR), an inhibitory G protein-coupled receptor, was highly expressed in embryonic stem cell-derived Flk1(+) vascular progenitors. The addition of KOR agonists to Flk1(+) vascular progenitors inhibited EC differentiation and 3-dimensional vascular formation. Activation of KOR decreased expression of Flk1 and NRP1 in vascular progenitors. The inhibitory effects of KOR were reversed by 8-bromoadenosine-3',5'-cAMP or a PKA agonist, N(6)-benzoyl-cAMP, indicating that KOR inhibits cAMP/PKA signaling. Furthermore, KOR-null or dynorphin (an endogenous KOR agonist)-null mice showed a significant increase in overall vascular formation and ectopic vascular invasion into somites at embryonic day -10.5. ECs in these null mice showed significant increase in Flk1 and NRP1, along with reciprocal decrease in plexinD1, which regulates vascular pathfinding. The opioid system is, thus, a new regulator of vascular development that simultaneously modifies 2 distinct vascular properties, EC differentiation and vascular pathfinding.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Células Endoteliales/citología , Células Endoteliales/fisiología , Receptores Opioides kappa/fisiología , Transducción de Señal/fisiología , Animales , Diferenciación Celular/fisiología , Línea Celular , Movimiento Celular/fisiología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dinorfinas/genética , Dinorfinas/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica/fisiología , Neuropilina-1/metabolismo , Embarazo , Receptores Opioides kappa/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
13.
J Cell Biol ; 189(2): 325-38, 2010 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-20404113

RESUMEN

Molecular mechanisms controlling arterial-venous specification have not been fully elucidated. Previously, we established an embryonic stem cell differentiation system and demonstrated that activation of cAMP signaling together with VEGF induces arterial endothelial cells (ECs) from Flk1(+) vascular progenitor cells. Here, we show novel arterial specification machinery regulated by Notch and beta-catenin signaling. Notch and GSK3beta-mediated beta-catenin signaling were activated downstream of cAMP through phosphatidylinositol-3 kinase. Forced activation of Notch and beta-catenin with VEGF completely reconstituted cAMP-elicited arterial EC induction, and synergistically enhanced target gene promoter activity in vitro and arterial gene expression during in vivo angiogenesis. A protein complex with RBP-J, the intracellular domain of Notch, and beta-catenin was formed on RBP-J binding sites of arterial genes in arterial, but not venous ECs. This molecular machinery for arterial specification leads to an integrated and more comprehensive understanding of vascular signaling.


Asunto(s)
Arterias/embriología , Células Endoteliales/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Células Madre/fisiología , beta Catenina/metabolismo , Animales , Arterias/citología , Arterias/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , AMP Cíclico/metabolismo , Células Endoteliales/citología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Ratones , Neovascularización Fisiológica/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Receptores Notch/genética , Células Madre/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/citología , Venas/embriología , Venas/metabolismo , beta Catenina/genética
14.
Blood ; 114(17): 3707-16, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19706882

RESUMEN

Fine tuning of vascular endothelial growth factor (VEGF) signaling is critical in endothelial cell (EC) differentiation and vascular development. Nevertheless, the system for regulating the sensitivity of VEGF signaling has remained unclear. Previously, we established an embryonic stem cell culture reproducing early vascular development using Flk1 (VEGF receptor-2)+ cells as common progenitors, and demonstrated that cyclic adenosine monophosphate (cAMP) enhanced VEGF-induced EC differentiation. Here we show that protein kinase A (PKA) regulates sensitivity of Flk1+ vascular progenitors to VEGF signaling for efficient EC differentiation. Blockade of PKA perturbed EC differentiation and vascular formation in vitro and ex vivo. Overexpression of constitutive active form of PKA (CA-PKA) potently induced EC differentiation and vascular formation. Expression of Flk1 and Neuropilin-1 (NRP1), which form a selective and sensitive receptor for VEGF(165), was increased only in CA-PKA-expressing progenitors, enhancing the sensitivity of the progenitors to VEGF(165) by more than 10 times. PKA activation induced the formation of a VEGF(165), Flk1, and NRP1 protein complex in vascular progenitors. These data indicate that PKA regulates differentiation potential of vascular progenitors to be endothelial competent via the dual induction of Flk1 and NRP1. This new-mode mechanism regulating "progenitor sensitivity" would provide a novel understanding in vascular development and regeneration.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Madre Embrionarias/metabolismo , Endotelio Vascular/citología , Neovascularización Fisiológica , Neuropilina-1/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Western Blotting , Técnicas de Cultivo de Célula , Diferenciación Celular , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Endotelio Vascular/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnicas para Inmunoenzimas , Inmunoprecipitación , Ratones , Neuropilina-1/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
15.
Genes Cells ; 11(3): 293-303, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16483317

RESUMEN

Hemoglobin consists of heme and globin proteins and is essential for oxygen transport in all vertebrates. Although biochemical features of heme synthesis enzymes have been well characterized, the function of these enzymes in early embryogenesis is not fully understood. We found that the sixth heme synthesis enzyme, coproporphyrinogen oxidase (CPO), is predominantly expressed in the intermediate cell mass (ICM) that is a major site of zebrafish primitive hematopoiesis. Knockdown of zebrafish CPO using anti-sense morpholinos (CPO-MO) leads to a significant suppression of hemoglobin production without apparent reduction of blood cells. Injection of human CPO RNA, but not a mutant CPO RNA that is similar to a mutant responsible for a hereditary coproporphyria (HCP), restores hemoglobin production in the CPO-MO-injected embryos. Furthermore, expression of CPO in the ICM is severely suppressed in both vlad tepes/gata1 mutants and in biklf-MO-injected embryos. In contrast, over-expression of biklf and gata1 significantly induces ectopic CPO expression. The function of CPO in heme biosynthesis is apparently conserved between zebrafish and human, suggesting that CPO-MO-injected zebrafish embryos might be a useful in vivo assay system to measure the biological activity of human CPO mutations.


Asunto(s)
Coproporfirinógeno Oxidasa/metabolismo , Eritropoyesis , Regulación del Desarrollo de la Expresión Génica , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Células Sanguíneas/metabolismo , Coproporfirinógeno Oxidasa/antagonistas & inhibidores , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Embrión no Mamífero , Factor de Transcripción GATA1/química , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Hematopoyesis , Hemoglobinas/metabolismo , Humanos , Hibridación in Situ , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Microinyecciones , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Homología de Secuencia de Aminoácido , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA