Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 950: 175319, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117212

RESUMEN

In the aquatic environment, the primary pollutants of heavy metals and pharmaceuticals always occur in coexisting forms, and the research about combined impacts remains unclear, especially transgenerational effects. Cadmium (Cd) is a heavy metal that can damage the endocrine reproduction systems and cause thyroid dysfunction in fish. Meanwhile, ketoprofen (KPF) is a nonsteroidal anti-inflammatory drug (NSAID) that can cause neurobehavioral damage and physiological impairment. However, to our knowledge, the combined exposure of Cd and KPF in transgenerational studies has not been reported. In this investigation, sexually mature zebrafish were subjected to isolated exposure and combined exposure to Cd (10 µg/L) and KPF (10 and 100 µg/L) at environmentally relevant concentrations for 42 days. In this background, breeding capacity, chemical accumulation rate in gonads, and tissue morphologies are investigated in parental fish. This is followed by examining the malformation rate, inflammation rate, and gene transcription in the F1 offspring. Our results indicate that combined exposure of Cd and KPF to the parental fish could increase the chemical accumulation rate and tissue damage in the gonads of fish and significantly reduce the breeding ability. Furthermore, these negative impacts were transmitted to its produced F1 embryos, reflected by hatching rate, body deformities, and thyroid axis-related gene transcription. These findings provide further insights into the harm posed by Cd in the presence of KPF to the aquatic ecosystems.


Asunto(s)
Cadmio , Cetoprofeno , Contaminantes Químicos del Agua , Pez Cebra , Animales , Cadmio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Cetoprofeno/toxicidad , Antiinflamatorios no Esteroideos/toxicidad , Femenino , Embrión no Mamífero/efectos de los fármacos , Masculino
2.
Food Chem Toxicol ; 191: 114861, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992409

RESUMEN

The prevalent use of Azorubine (E122) and the unintentional food additive, Bisphenol A (BPA), in ready-to-drink (RTD) beverages raises significant health concerns, especially for children. The combined impact on embryonic development must be explored despite individual safety assessments. Our investigation revealed that the combined exposure of E122 and BPA at beverage concentration significantly induces mortality and morphological deformities, including reduced growth, pericardial edema, and yolk sac edema. The co-exposure triggers oxidative stress, impairing antioxidant enzyme responses and resulting in lipid and cellular damage. Notably, apoptotic cells are observed in the neural tube and notochord of the co-exposed larvae. Critical genes related to the antioxidant response elements (nrf2, ho1, and nqo1), apoptosis activation (bcl2, bax, and p53), and pro/anti-inflammatory cytokines (nfkb, tnfa, il1b, tgfb, il10, and il12) displayed substantial changes, highlighting the molecular mechanisms. Behavior studies indicated hypo-locomotion with reduced thigmotaxis and touch response in co-exposed larvae, distinguishing it from individual exposures. These findings underscore the neurodevelopmental impacts of E122 and BPA at reported beverage concentrations, emphasizing the urgent need for comprehensive safety assessments, particularly for child consumption.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , Pez Cebra , Animales , Apoptosis/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Bebidas , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Larva/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fenoles/toxicidad
3.
Drug Chem Toxicol ; : 1-16, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910278

RESUMEN

The growing concern about pollution and toxicity in aquatic as well as terrestrial organisms is predominantly caused due to waterborne exposure and poses a risk to environmental systems and human health. This study addresses the co-toxic effects of cadmium (Cd) and ketoprofen (KPF), representing heavy metal and pharmaceutical discharge pollutants, respectively, in aquatic ecosystems. A 96-h acute toxicity assessment was conducted using zebrafish embryos. The results indicated that high dosages of KPF (10, 15, and 100 µg/mL) and Cd (10 and 15 µg/mL) reduced survivability and caused concentration-dependent deformities such as scoliosis and yolk sac edema. These findings highlight the potential defects in development and metabolism, as evidenced by hemolysis tests demonstrating dose-dependent effects on blood cell integrity. Furthermore, this study employs adult zebrafish for a 42-day chronic exposure to Cd and KPF (10 and 100 µg/L) alone or combined (10 + 10 and 100 + 100 µg/L) to assess organ-specific Cd and KPF accumulation in tissue samples. Organ-specific accumulation patterns underscore complex interactions impacting respiratory, metabolic, and detoxification functions. Prolonged exposure induces reactive oxygen species formation, compromising antioxidant defense systems. Histological examinations reveal structural changes in gills, gastrointestinal, kidney, and liver tissues, suggesting impairments in respiratory, osmoregulatory, nutritional, and immune functions. This study emphasizes the importance of conducting extensive research on co-toxic effects to assist with environmental risk assessments and safeguard human health and aquatic ecosystems.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38693739

RESUMEN

Type 2 diabetes mellitus is a long-term medical illness in which the body either becomes resistant to insulin or fails to produce it sufficiently. Mostly, combinatorial therapy is required to control blood glucose levels. However, combinatorial therapy has detrimental side effects. The prevalence of the cases and subsequent increases in medical costs of the same intimidate human health globally. While there have been a lot of studies focused on developing diabetic regimens that work to lower blood glucose levels, their effectiveness is short-lived because of unfavorable side effects, such as weight gain and hypoglycemia. In recent years, the PIN1 (protein interacting with NIMA) enzyme has attracted the attention of researchers. Previous studies suggested that PIN1 may act on the various substrates that are involved in the progression of T2DM and also help in the management of diabetes-related disorders. Thus, the focus of the current review is to examine the correlation between PIN1, T2DM and its related disorders and explore the possibility of developing novel therapeutic targets through PIN1 inhibition.

5.
Environ Toxicol Pharmacol ; 109: 104479, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821154

RESUMEN

Plant growth regulators (PGRs) are increasingly used to promote sustainable agriculture, but their unregulated use raises concerns about potential environmental risks. Indole-3-acetic acid (IAA), a commonly used PGR, has been the subject of research on its developmental toxicity in the in-vivo zebrafish model. IAA exposure to zebrafish embryos caused oxidative stress, lipid peroxidation, and cellular apoptosis. The study also revealed that critical antioxidant genes including sod, cat, and bcl2 were downregulated, while pro-apoptotic genes such as bax and p53 were upregulated. IAA exposure also hampered normal cardiogenesis by downregulating myl7, amhc, and vmhc genes and potentially influencing zebrafish neurobehavior. The accumulation of IAA was confirmed by HPLC analysis of IAA-exposed zebrafish tissues. These findings underscore the need for further study on the potential ecological consequences of IAA use and the need for sustainable agricultural practices.


Asunto(s)
Regulación hacia Abajo , Embrión no Mamífero , Ácidos Indolacéticos , Estrés Oxidativo , Pez Cebra , Animales , Estrés Oxidativo/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Corazón/efectos de los fármacos , Apoptosis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Int Immunopharmacol ; 131: 111859, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38492342

RESUMEN

Epilepsy is a chronic neurological disease characterized by a persistent susceptibility to seizures. Pharmaco-resistant epilepsies, impacting around 30 % of patients, highlight the urgent need for improved treatments. Neuroinflammation, prevalent in epileptogenic brain regions, is a key player in epilepsy, prompting the search for new mechanistic therapies. Hence, in this study, we explored the anti-inflammatory potential of pyrazole benzenesulfonamide derivative (T1) against pentylenetetrazole (PTZ) induced epilepsy-like conditions in in-vivo zebrafish model. The results from the survival assay showed 79.97 ± 6.65 % at 150 µM of T1 compared to PTZ-group. The results from reactive oxygen species (ROS), apoptosis and histology analysis showed that T1 significantly reduces cellular damage due to oxidative stress in PTZ-exposed zebrafish. The gene expression analysis and neutral red assay results demonstrated a notable reduction in the inflammatory response in zebrafish pre-treated with T1. Subsequently, the open field test unveiled the anti-convulsant activity of T1, particularly at a concentration of 150 µM. Moreover, both RT-PCR and immunohistochemistry findings indicated a concentration-dependent potential of T1, which inhibited COX-2 in zebrafish exposed to PTZ. In summary, T1 protected zebrafish against PTZ-induced neuronal damage, and behavioural changes by mitigating the inflammatory response through the inhibition of COX-2.


Asunto(s)
Epilepsia , Pentilenotetrazol , Animales , Humanos , Pez Cebra , Bencenosulfonamidas , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico , Modelos Animales de Enfermedad
7.
Eur J Pharmacol ; 957: 175994, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37574161

RESUMEN

Inflammatory Bowel Disease (IBD) is a group of persistent intestinal illnesses resulting from bowel inflammation unrelated to infection. The prevalence of IBD is rising in industrialized countries, increasing healthcare costs. Whether naturally occurring or synthetic, chalcones possess a broad range of biological properties, including anti-inflammatory, anti-microbial, and antioxidant effects. This investigation focuses on DKO7 (E)-3-(4-(dimethylamino)phenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one, a synthesized chalcone with potential anti-inflammatory effects in a zebrafish model of intestinal inflammation induced by Dextran sodium sulfate (DSS). The in vitro study displayed dose-dependent anti-inflammatory as well as antioxidant properties of DKO7. Additionally, DKO7 protected zebrafish larvae against lipid peroxidation, reactive oxygen stress (ROS), and DSS-induced inflammation. Moreover, DKO7 reduced the expression of pro-inflammatory genes, including TNF-α, IL-1ß, IL-6, and iNOS. Further, it reduced the levels of nitric oxide (NO) and lactate dehydrogenase (LDH) in the intestinal tissues of adult zebrafish and increased the levels of antioxidant enzymes such as Catalase (CAT) and superoxide dismutase (SOD). The protective effect of DKO7 against chemically (or DSS) induced intestinal inflammation was further verified using histopathological techniques in intestinal tissues. The furan-based chalcone derivative, DKO7, displayed antioxidant and anti-inflammatory properties. Also, DKO7 successfully reverses the DSS-induced intestinal damage in zebrafish. Overall, this study indicates the ability of DKO7 to alleviate DSS-induced gut inflammation in an in-vivo zebrafish.


Asunto(s)
Chalcona , Chalconas , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Antioxidantes/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Pez Cebra/metabolismo , Chalcona/farmacología , Chalconas/farmacología , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Sulfato de Dextran/efectos adversos
8.
Arch Microbiol ; 205(6): 238, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37193831

RESUMEN

Kinases can be grouped into 20 families which play a vital role as a regulator of neoplasia, metastasis, and cytokine suppression. Human genome sequencing has discovered more than 500 kinases. Mutations of the kinase itself or the pathway regulated by kinases leads to the progression of diseases such as Alzheimer's, viral infections, and cancers. Cancer chemotherapy has made significant leaps in recent years. The utilization of chemotherapeutic agents for treating cancers has become difficult due to their unpredictable nature and their toxicity toward the host cells. Therefore, targeted therapy as a therapeutic option against cancer-specific cells and toward the signaling pathways is a valuable avenue of research. SARS-CoV-2 is a member of the Betacoronavirus genus that is responsible for causing the COVID pandemic. Kinase family provides a valuable source of biological targets against cancers and for recent COVID infections. Kinases such as tyrosine kinases, Rho kinase, Bruton tyrosine kinase, ABL kinases, and NAK kinases play an important role in the modulation of signaling pathways involved in both cancers and viral infections such as COVID. These kinase inhibitors consist of multiple protein targets such as the viral replication machinery and specific molecules targeting signaling pathways for cancer. Thus, kinase inhibitors can be used for their anti-inflammatory, anti-fibrotic activity along with cytokine suppression in cases of COVID. The main goal of this review is to focus on the pharmacology of kinase inhibitors for cancer and COVID, as well as ideas for future development.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , SARS-CoV-2 , Neoplasias/tratamiento farmacológico , Citocinas
9.
Bioorg Chem ; 135: 106490, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37001472

RESUMEN

In organic chemistry, the use of deuterium exchange as a tool to study the mechanism of chemical reaction has been well explored. Since two decades, the research focus on deuterated bioactive molecules has been gaining attention for investigating the therapeutic potential of deuterium replacement in a chemical structure. Recently, Food Drug Administration (FDA) approved the first deuterium-labeled drug "deutetrabenazine", and notified the deuterated drugs as new chemical entities (NCEs). Henceforth, the deuterium substitution driven structure activity relationship, preclinical pharmacokinetics, and toxicity studies were much initiated. Deuteration of a bioactive molecule often results in improved therapeutic efficacy due to the altered pharmacokinetic profile. This review provides a conceptual framework on the importance of deuterium atom in chemical structure of a drug, and its biological value in improved physiochemical properties, pharmacokinetics, biological target interaction, diagnosis, and toxicity. In addition, this review concisely updated the recent deuteration methods, chemical stability, challenges in drug development, deuterium-based imaging in diagnosis, and selected synthetic scheme of deuterated molecules.


Asunto(s)
Desarrollo de Medicamentos , Deuterio/química , Preparaciones Farmacéuticas/química , Relación Estructura-Actividad
10.
J Biomol Struct Dyn ; 41(23): 14582-14598, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36974959

RESUMEN

Tuberculosis is a highly infectious disease other than HIV/AIDS and it is one of the top ten causes of death worldwide. Resistance development in the bacteria occurs because of genetic alterations, and the molecular insights suggest that the accumulation of mutation in the individual drug target genes is the primary mechanism of multi-drug resistant tuberculosis. Chorismate is an essential structural fragment for the synthesis of aromatic amino acids and synthesized biochemically by a number of bacteria, including Mycobacterium tuberculosis, utilizing the shikimate pathway. This shikimate kinase is the newer possible target for the generation of novel antitubercular drug because this pathway is expressed only in mycobacterium and not in Mammals. The discovery and development of shikimate kinase inhibitors provide an opportunity for the development of novel selective medications. Multiple shikimate kinase inhibitors have been identified via insilico virtual screening and related protein-ligand interactions along with their in-vitro studies. These inhibitors bind to the active site in a similar fashion to shikimate. In the current review, we present an overview of the biology and chemistry of the shikimate kinase protein and its inhibitors, with special emphasis on the various active scaffold against the enzyme. A variety of chemically diversified synthetic scaffolds including Benzothiazoles, Oxadiazoles, Thiobarbiturates, Naphthoquinones, Thiazoleacetonitriles, Hybridized Pyrazolone derivatives, Orthologous biological macromolecule derivatives, Manzamine Alkaloids derivatives, Dipeptide inhibitor, and Chalcones are discussed in detail. These derivatives bind to the specific target appropriately proving their potential ability through different binding interactions and effectively explored as an effective and selective Sk inhibitor.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Mycobacterium tuberculosis , Ácido Shikímico , Animales , Ácido Shikímico/metabolismo , Ácido Shikímico/farmacología , Antituberculosos/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Inhibidores Enzimáticos/química , Mamíferos/metabolismo
11.
Comput Math Methods Med ; 2022: 7793946, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529257

RESUMEN

Magnetoencephalography (MEG) is now widely used in clinical examinations and medical research in many fields. Resting-state magnetoencephalography-based brain network analysis can be used to study the physiological or pathological mechanisms of the brain. Furthermore, magnetoencephalography analysis has a significant reference value for the diagnosis of epilepsy. The scope of the proposed research is that this research demonstrates how to locate spikes in the phase locking functional brain connectivity network of the Desikan-Killiany brain region division using a neural network approach. It also improves detection accuracy and reduces missed and false detection rates. The automatic classification of epilepsy encephalomagnetic signals can make timely judgments on the patient's condition, which is of tremendous clinical significance. The existing literature's research on the automatic type of epilepsy EEG signals is relatively sufficient, but the research on epilepsy EEG signals is relatively weak. A full-band machine learning automatic discrimination method of epilepsy brain magnetic spikes based on the brain functional connection network is proposed. The four classifiers are comprehensively compared. The classifier with the best effect is selected, and the discrimination accuracy can reach 93.8%. Therefore, this method has a good application prospect in automatically identifying and labeling epileptic spikes in magnetoencephalography.


Asunto(s)
Electroencefalografía , Epilepsia , Encéfalo/diagnóstico por imagen , Electroencefalografía/métodos , Epilepsia/diagnóstico por imagen , Humanos , Fenómenos Magnéticos , Magnetoencefalografía/métodos
12.
Sci Rep ; 11(1): 4393, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623072

RESUMEN

The purpose of this study was to prevent anaemia caused on long-term phenytoin treatment among Epileptic patients. Therefore, two groups were categorised based on the duration of phenytoin namely, cases and control. The duration of Phenytoin treatment for case was > 2 years while control had < 1 year. The estimation of serum Folate and Vitamin B12 was carried out and the association between the deficiency of Vitamins with the duration of treatment were evaluated using Linear Regression Analysis. The statistical results shown that the mean value of Folate (2.61 ± 1.81) and the mean value of Vitamin B12 (284.68 ± 110.12) were considered to be low as the duration of Phenytoin treatment increases (> 2 years) compare to control with the Folate concentration of (7.01 ± 4.40) which was statistically significant (p < 0.000). The experimental results have proved that a long-term phenytoin treatment significantly affects the concentration of Folate and Vitamin B12 among the Epileptic patients vigorously.


Asunto(s)
Anticonvulsivantes/efectos adversos , Epilepsia/sangre , Ácido Fólico/sangre , Fenitoína/efectos adversos , Vitamina B 12/sangre , Adulto , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenitoína/uso terapéutico
13.
J Biomol Struct Dyn ; 39(14): 5093-5104, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32602808

RESUMEN

Quantitative Structure Activity Relationship (QSAR) is one of the realistic and most successful methods for drug design in optimizing a lead. A series of forty-four molecules from diarylpyrazole benzene sulphonamide derivatives with their cyclooxygenase-2 inhibitory activity were subjected to qsar studies using QSARINS software. The significant two descriptor qsar model generated showed correlation coefficient of cross validation leave one out (Q2LOO)=0.5565, coefficient of determination (R2)=0.6530, (R2ext)=0.8225, cross validation leave many out (Q2LMO)=0.5201, Concordance Correlation Coefficient (CCCcv)=0.7262, CCCtr=0.7901, and CCCext=0.8930. The descriptor 3D Molecular Representations of Structures based on Electronic diffraction (3D-MoRSEC-6) weighted by atomic charges, where 6 is scattering parameter and Geary Autocorrelation-lag3/weighted by atomic Sanderson electronegativities (GATSe3) revealed that the atomic charges and spatial autocorrelation play a key role in Cyclooxygenase-2 inhibitory (COX-2) activity. New lead molecules were designed based on key structural findings and predicted for their COX-2 inhibitory activity using the developed two-descriptor model. Molecular docking studies were carried out for the best-designed molecules using Autodock 4.2.6 along with supportive in silico absorption, distribution, metabolism, excretion, and toxicity predictions. Both the hydrophilic as well as hydrophobic parts of the residues of active site regions interacted with best predicted active compounds. The study suggests crucial properties and key interactions that are essential for potent enzyme inhibition and finds this series as a promising lead for further development as novel cyclooxygenase agents. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Benceno , Inhibidores de la Ciclooxigenasa 2 , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Sulfonamidas
14.
Bioorg Chem ; 102: 104083, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32745735

RESUMEN

Tuberculosis (TB) remains a major global health problem. It causes ill-health among millions of people each year and rank as the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus (HIV). Shikimate kinase is one of the major enzymes targeted for TB. Most approaches to overcome TB were based on synthesis and screening of a known compounds to obtain a few representatives with desired potency. In this study, we have applied a virtual screening approach which combines ligand- and structure-based approaches to screen a large library of compounds as a starting point for the identification of new scaffolds for the development of shikimate kinase inhibitors. The combined approach has identified 2 new scaffolds as potential inhibitors of shikimate kinase. To prove the approach, few of the molecules and their derivatives, a total of 17 compounds, were synthesized. The compounds were tested for biological activity and shows moderate activity against shikimate kinase. The shikimate kinase enzyme inhibition study reveals that the compounds showed inhibition (IC50) at concentrations of 50 µg/mL (Compounds 21, 22, 24, 25, 26, 27, 30, 32, 34) and 25 µg/mL (14, 19, 23, 31, 33).


Asunto(s)
Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Relación Estructura-Actividad
15.
Leuk Lymphoma ; 60(2): 433-441, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29966470

RESUMEN

Considering conflicting data on CDKN2A/B deletion in ALL, this study to assess its prognostic significance as an independent marker in a total of 96 pediatric B and T-ALL cases was planned. The overall frequency of CDKN2A/B deletion was 44% (n = 43) with 36% (30/83) in B-ALL and 100% (13/13) in T-ALL. CDKN2A/B deletion was significantly associated with high WBC count (p = .002) and National Cancer Institute risk (p = .01) in B-ALL. Importantly, CDKN2A/B deletion cases had poor EFS of 42% at 28 months compared to EFS of 90% in rest (p = .0004). Further, relapse free survival was only 56% for cases with CDKN2A/B deletions (n = 25), compared to 100% in control group (p = .001). Moreover, CDKN2A/B deletion was the only risk factor associated with early relapse (p = .01) compared to IKZF1 deletion (p = .73) or occurrence of BCR-ABL1 fusion transcript (p = .26). Thus our study data highlights potential prognostic role of CDKN2A/B deletions in early disease stratification in pediatric B-ALL.


Asunto(s)
Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Eliminación de Gen , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Biomarcadores de Tumor , Niño , Preescolar , Femenino , Proteínas de Fusión bcr-abl/genética , Humanos , Inmunofenotipificación , Lactante , Estimación de Kaplan-Meier , Masculino , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Pronóstico , Recurrencia
16.
Bioorg Chem ; 52: 62-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24368170

RESUMEN

Tuberculosis (TB) is the world's second commonest cause of death next to HIV/AIDS. The increasing emergence of multi drug resistance and the recalcitrant nature of persistent infections pose an additional challenge for the treatment of TB. Due to the development of resistance to conventional antibiotics there is a need for new therapeutic strategies to combat M. tuberculosis. One such target is Mycothiol (MSH), a major low molecular-mass thiol in mycobacteria, an important cellular anti-oxidant. MSH is present only in actinomycetes and hence is a good target. This review explores mycothiol as a potential target against tuberculosis and various research ongoing worldwide.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Cisteína/fisiología , Glicopéptidos/fisiología , Inositol/fisiología , Mycobacterium tuberculosis/metabolismo , Cisteína/biosíntesis , Glicopéptidos/biosíntesis , Inositol/biosíntesis , Terapia Molecular Dirigida , Mycobacterium tuberculosis/efectos de los fármacos
17.
J Chem Biol ; 7(1): 29-35, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24432136

RESUMEN

Fungal infections pose a continuous and serious threat to human health and life. The intrinsic resistance has been observed in many genera of fungi. Many fungal infections are caused by opportunistic pathogens that may be endogenous (Candida infections) or acquired from the environment (Cryptococcus and Aspergillus infections). So, new therapeutic strategies are needed to combat various fungal infections. Fluconazole shows good antifungal activity with relatively low toxicity and is preferred as first line antifungal therapy, but it has suffered from severe drug resistance. So, there is a need to design novel analogues by modification of fluconazole-like structure. A novel series of phenyl(2H-tetrazol-5-yl)methanamine derivatives were synthesized by reaction of α-amino nitrile with sodium azide and ZnCl2 in presence of isopropyl alcohol. They were evaluated for antifungal activity against Candida albicans and Aspergillus niger and subjected to docking study against 1EA1.

18.
Bioorg Med Chem ; 15(14): 4674-99, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17521912

RESUMEN

Coronary arterial diseases are responsible for more deaths than all other associated causes combined. Elevated serum cholesterol levels leading to atherosclerosis can cause coronary heart disease (CHD). Reduction in serum cholesterol levels reduces the risk for CHD, substantially. Medicinal chemists all around the world have been designing, synthesizing, and evaluating a variety of new bioactive molecules for lowering lipid levels. This review summarizes the disorders associated with elevation of lipids in blood and the current strategies to control them. The emphasis has been laid in particular on the new potential biological targets and the possible treatments as well as the current ongoing research status in the field of lipid lowering agents.


Asunto(s)
Hiperlipidemias/metabolismo , Animales , Aterosclerosis/metabolismo , Fenómenos Bioquímicos , Bioquímica , Progresión de la Enfermedad , Diseño de Fármacos , Humanos , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/patología , Lipoproteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA