Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 12(11)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182766

RESUMEN

Background: tyrosine kinase inhibitors (TKIs) inhibit phosphorylation of signaling proteins. TKIs often show large variations in the clinic due to poor pharmacology, possibly leading to resistance. We compared gut absorption of inhibitors of epidermal growth factor receptor (erlotinib, gefitinib, and afatinib), ALK-cMET (crizotinib), PDGFR/BCR-Abl (dasatinib), and multikinase inhibitors (sunitinib and sorafenib). In clinical samples, we measured the disposition of each compound within various blood compartments. Methods: we used an optimized CaCo2 gut epithelial model to characterize 20 µM TKI absorption. The apical/basolateral transfer is considered to represent the gut/blood transfer. Drugs were measured using LC-MS/MS. Results: sorafenib and sunitinib showed the highest apical/basolateral transfer (Papp 14.1 and 7.7 × 10-6 cm/s, respectively), followed by dasatinib (3.4), afatinib (1.5), gefitinib (0.38), erlotinib (0.13), and crizotinib (n.d.). However, the net absorptions for dasatinib, afatinib, crizotinib, and erlotinib were highly negative (efflux ratios >5) or neutral/negative, sorafenib (0.86), gefitinib (1.0), and sunitinib (1.6). A high negative absorption may result in resistance because of a poor exposure of tissues to the drug. Accumulation of the TKIs at the end of the transfer period (A->B) was not detectable for erlotinib, very low for afatinib 0.45 pmol/µg protein), followed by gefitinib (0.79), dasatinib (1.1), sorafenib (1.65), and crizotinib (2.11), being highest for sunitinib (11.9). A similar pattern was found for accumulation of these drugs in other colon cell lines, WiDr and HT29. In clinical samples, drugs accumulated consistently in red blood cells; blood to plasma ratios were all > 3 (sorafenib) or over 30 for erlotinib. Conclusions: TKIs are consistently poorly absorbed, but accumulation in red blood cells seems to compensate for this.

2.
Front Cell Dev Biol ; 8: 577215, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163492

RESUMEN

Pralatrexate (Folotyn; PLX) and belinostat (Beleodaq; BLS) are registered for the treatment of patients with peripheral T-cell lymphoma (PTCL) and are being considered for other lymphomas. In this study we investigated whether BLS had the ability to potentiate the cytotoxicity of PLX. A panel of lymphoma cell lines was used for the combination studies: the B-cell SUDHL-4, SUDHL-5, HT, Jeko-1 and T-cell Karpas-299 and Hut-78. Uptake of PLX was mediated by the reduced folate carrier (RFC). PLX showed a 6-fold better RFC substrate affinity compared to methotrexate, and 2-fold better than levoleucovorin (l-LV). Sensitivity expressed as the concentration that resulted in 50% growth inhibition (IC50) after 72 hr exposure to PLX varied from 2.8 to 20 nM and for BLS from 72 to 233 nM, independent of the background of the cell lines. The interaction between BLS and PLX was studied using the median-drug effect analysis. At a fixed molar ratio between the drugs based on the IC50 concentration the average combination index (CI) for all cell lines showed additivity (CI: around 1.0). In three selected cell lines (SUDHL-4, SUDHL-5, and HT) sequential exposure (24 h pretreatment with BLS, followed by 48 h to PLX + BLS), did not improve interaction (CI: 0.9-1.4). As an alternative approach a non-fixed ratio was used by exposing SUDHL-4, SUDHL-5, and HT cells to IC25 concentrations of either BLS or PLX in combination with the other drug. Exposure to IC25 of PLX did not decrease the IC50 for BLS (CI from 0.6-1.2), but exposure to IC25 of BLS markedly increased PLX sensitivity (low CIs from 0.40 to 0.66). Mechanistic studies focused on induction of apoptosis, and showed cleavage of predominantly caspase-9 in HT and SUDHL-4 cells for both drugs at their IC50s, being similar in the combination setting. Moreover, at these concentrations, the drugs were shown to confer an S-phase arrest. In conclusion, the combination of PLX and BLS showed additivity in various lymphoma cell lines, with a schedule-dependent synergism in B-cell lymphoma. Based on these data, proficient inhibition of HDAC activity by BLS holds promise in sensitization of tumor cells to PLX.

3.
Int J Mol Sci ; 21(8)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295203

RESUMEN

(1) Background: RX-3117 (fluorocyclopentenyl-cytosine) is a cytidine analog that inhibits DNA methyltransferase 1 (DNMT1). We investigated the mechanism and potential of RX-3117 as a demethylating agent in several in vitro models. (2) Methods: we used western blotting to measure expression of several proteins known to be down-regulated by DNA methylation: O6-methylguanine-DNA methyltransferase (MGMT) and the tumor-suppressor genes, p16 and E-cadherin. Transport of methotrexate (MTX) mediated by the proton-coupled folate transporter (PCFT) was used as a functional assay. (3) Results: RX-3117 treatment decreased total DNA-cytosine-methylation in A549 non-small cell lung cancer (NSCLC) cells, and induced protein expression of MGMT, p16 and E-cadherin in A549 and SW1573 NSCLC cells. Leukemic CCRF-CEM cells and the MTX-resistant variant (CEM/MTX, with a deficient reduced folate carrier) have a very low expression of PCFT due to promoter hypermethylation. In CEM/MTX cells, pre-treatment with RX-3117 increased PCFT-mediated MTX uptake 8-fold, and in CEM cells 4-fold. With the reference hypomethylating agent 5-aza-2'-deoxycytidine similar values were obtained. RX-3117 also increased PCFT gene expression and PCFT protein. (4) Conclusion: RX-3117 down-regulates DNMT1, leading to hypomethylation of DNA. From the increased protein expression of tumor-suppressor genes and functional activation of PCFT, we concluded that RX-3117 might have induced hypomethylation of the promotor.


Asunto(s)
Citidina/análogos & derivados , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Transportador de Folato Acoplado a Protón/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Línea Celular Tumoral , Citidina/farmacología , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Metotrexato/farmacología , Transportador de Folato Acoplado a Protón/genética , Proteínas Supresoras de Tumor/genética
4.
J Cell Physiol ; 235(11): 8085-8097, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31960422

RESUMEN

In non-small cell lung cancer, sensitizing mutations in epidermal growth factor receptor (EGFR) or cMET amplification serve as good biomarkers for targeted therapies against EGFR or cMET, respectively. Here we aimed to determine how this different genetic background would affect the interaction between the EGFR-inhibitor erlotinib and the cMET-inhibitor crizotinib. To unravel the mechanism of synergy we investigated the effect of the drugs on various parameters, including cell cycle arrest, migration, protein phosphorylation, kinase activity, the expression of drug efflux pumps, intracellular drug concentrations, and live-cell microscopy. We observed additive effects in EBC-1, H1975, and HCC827, and a strong synergism in the HCC827GR5 cell line. This cell line is a clone of the HCC827 cells that harbor an EGFR exon 19 deletion and has been made resistant to the EGFR-inhibitor gefitinib, resulting in cMET amplification. Remarkably, the intracellular concentration of crizotinib was significantly higher in HCC827GR5 compared to the parental HCC827 cell line. Furthermore, live-cell microscopy with a pH-sensitive probe showed a differential reaction of the pH in the cytoplasm and the lysosomes after drug treatment in the HCC827GR5 in comparison with the HCC827 cells. This change in pH could influence the process of lysosomal sequestration of drugs. These results led us to the conclusion that lysosomal sequestration is involved in the strong synergistic reaction of the HCC827GR5 cell line to crizotinib-erlotinib combination. This finding warrants future clinical studies to evaluate whether genetic background and lysosomal sequestration could guide tailored therapeutic interventions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Lisosomas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Crizotinib/farmacología , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Gefitinib/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mutación/genética , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores
5.
Nucleosides Nucleotides Nucleic Acids ; 35(10-12): 652-662, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27906622

RESUMEN

Antimetabolites are incorporated into DNA and RNA, affecting their function. Liquid-chromatography-mass-spectrometry (LC-MS-MS) permits the sensitive, selective analysis of normal nucleosides. The method was adapted to measure the incorporation of deoxyuridine, gemcitabine (difluorodeoxycytidine), its metabolite difluorodeoxyuridine (dFdU), and the novel compound fluorocyclopentenylcytosine (RX3117). DNA was degraded to its deoxynucleotides for quantification by LC-MS-MS, gradient chromatography on a Phenomenex prodigy-3-ODS with positive ionization. The range of deoxyuridine DNA-mis-incorporation varied nine-fold in 27 cell lines (leukemia, colon, ovarian, lung cancer). At low-folate conditions a 2.1-fold increase in deoxyuridine was observed. Global methylation (given as % 5-methyl-deoxycytidine) was comparable between the cell lines (4.6-6.5%). Exposure of A2780 cells to 1 µM gemcitabine (4 hours) resulted in 3.6 pmol gemcitabine/µg DNA, but in AG6000 cells (deoxycytidine-kinase-deficient) no incorporation was found. However, when A2780, AG6000, or CCRF-CEM cells were exposed to 100 µM dFdU we found it as gemcitabine, 20.5, 19.6, and 0.51 pmol gemcitabine/µg DNA, respectively. Preincubation of CCRF-CEM cells with cyclopentenyl-cytosine (a CTP-synthetase inhibitor) increased dFdU incorporation four-fold. Apparently dFdU is activated independently of deoxycytidine-kinase and possibly converted in-situ to dFdCMP. RX3117 was incorporated into both DNA and RNA (0.0037 and 0.00515 pmol/µg, respectively). In summary, a sensitive method to quantify the incorporation of gemcitabine, deoxyuridine, and RX-3117 was developed, which revealed that dFdU was incorporated into DNA as the parent compound gemcitabine.


Asunto(s)
Citidina/análogos & derivados , Metilación de ADN , Desoxicitidina/análogos & derivados , Floxuridina/metabolismo , Línea Celular Tumoral , Cromatografía Liquida , Citidina/metabolismo , ADN/metabolismo , Desoxicitidina/metabolismo , Humanos , Límite de Detección , Espectrometría de Masas , ARN/metabolismo , Gemcitabina
6.
Bioorg Chem ; 64: 51-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26657603

RESUMEN

A series of nitric oxide donating acridone derivatives are synthesized and evaluated for in vitro cytotoxic activity against different sensitive and resistant cancer cell lines MCF7/Wt, MCF7/Mr (BCRP overexpression) and MCF7/Dx (P-gp expression). The results showed that NO-donating acridones are potent against both the sensitive and resistant cells. Structure activity relationship indicate that the nitric oxide donating moiety connected through a butyl chain at N(10) position as well as morpholino moiety linkage through an amide bridge on the acridone ring system at C-2 position, are required to exert a good cytotoxic effect. Further, good correlations were observed when cytotoxic properties were compared with in vitro nitric oxide release rate, nitric oxide donating group potentiated the cytotoxic effect of the acridone derivatives. Exogenous release of nitric oxide by NO donating acridones enhanced the accumulation of doxorubicin in MCF7/Dx cell lines when it was coadministered with doxorubicin, which inhibited the efflux process of doxorubicin. In summary, a nitric oxide donating group can potentiate the anti-MDR property of acridones.


Asunto(s)
Acridonas/farmacología , Antineoplásicos/farmacología , Doxorrubicina/farmacología , Donantes de Óxido Nítrico/farmacología , Acridonas/síntesis química , Acridonas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Células MCF-7 , Mitoxantrona/farmacología , Simulación del Acoplamiento Molecular , Donantes de Óxido Nítrico/síntesis química , Donantes de Óxido Nítrico/química
7.
Cancer Chemother Pharmacol ; 73(5): 911-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24595806

RESUMEN

Cellular folate concentration was earlier reported to be a critical factor in the activity and expression of the multidrug resistance protein MRP1 (ABCC1). Since MRP1 mediates resistance to a variety of therapeutic drugs, we investigated whether the cellular folate concentration influences the MRP1-mediated cellular resistance against drugs. As a model system, we used the human ovarian carcinoma cell line 2008wt, and its stably MRP1/ABCC1-transfected subline 2008/MRP1. These cell types have a moderate and high expression of MRP1, respectively. In folate-deprived 2008/MRP1 cells, the MRP1-mediated efflux of its model substrate calcein decreased to ~55 % of the initial efflux rate under folate-rich conditions. In 2008wt cells, only a small decrease in efflux was observed. Folate depletion for 5-10 days markedly increased (~500 %) cellular steady-state accumulation of calcein in 2008/MRP1 cells and moderately in 2008wt cells. A subsequent short (24 h) exposure to 2.3 µM L-leucovorin decreased calcein levels again in MRP1-overexpressing cells. Folate deprivation markedly increased growth inhibitory effects of the established MRP1 substrates daunorubicin (~twofold), doxorubicin (~fivefold), and methotrexate (~83-fold) in MRP1-overexpressing cells, proportional to MRP1 expression. In conclusion, this study demonstrates that increased cellular folate concentrations induce MRP1/ABCC1-related drug efflux and drug resistance. These results have important implications in the understanding of the role of MRP1 and its homologs in clinical drug resistance.


Asunto(s)
Resistencia a Medicamentos/efectos de los fármacos , Metotrexato/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/efectos de los fármacos , Transporte Biológico , Línea Celular Tumoral , Ácido Fólico/metabolismo , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
8.
Invest New Drugs ; 31(6): 1444-57, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24048768

RESUMEN

A novel cytidine analog fluorocyclopentenylcytosine (RX-3117; TV-1360) was characterized for its cytotoxicity in a 59-cell line panel and further characterized for cytotoxicity, metabolism and mechanism of action in 15 additional cancer cell lines, including gemcitabine-resistant variants. In both panels sensitivity varied 75-fold (IC50: 0.4- > 30 µM RX-3117). RX-3117 showed a different sensitivity profile compared to cyclopentenyl-cytosine (CPEC) and azacytidine, substrates for uridine-cytidine-kinase (UCK). Dipyridamole, an inhibitor of the equilibrative-nucleoside-transporter protected against RX-3117. Uridine and cytidine protected against RX-3117, but deoxycytidine (substrate for deoxycytidine-kinase [dCK]) not, although it protected against gemcitabine, demonstrating that RX-3117 is a substrate for UCK and not for dCK. UCK activity was abundant in all cell lines, including the gemcitabine-resistant variants. RX-3117 was a very poor substrate for cytidine deaminase (66,000-fold less than gemcitabine). RX-3117 was rapidly metabolised to its nucleotides predominantly the triphosphate, which was highest in the most sensitive cells (U937, A2780) and lowest in the least sensitive (CCRF-CEM). RX-3117 did not significantly affect cytidine and uridine nucleotide pools. Incorporation of RX-3117 into RNA and DNA was higher in sensitive A2780 and low in insensitive SW1573 cells. In sensitive U937 cells 1 µM RX-3117 resulted in 90% inhibition of RNA synthesis but 100 µM RX-3117 was required in A2780 and CCRF-CEM cells. RX-3117 at IC50 values did not affect the integrity of RNA. DNA synthesis was completely inhibited in sensitive U937 cells at 1 µM, but in other cells even higher concentrations only resulted in a partial inhibition. At IC50 values RX-3117 downregulated the expression of DNA methyltransferase. In conclusion, RX-3117 showed a completely different sensitivity profile compared to gemcitabine and CPEC, its uptake is transporter dependent and is activated by UCK. RX-3117 is incorporated into RNA and DNA, did not affect RNA integrity, depleted DNA methyltransferase and inhibited RNA and DNA synthesis. Nucleotide formation is related with sensitivity.


Asunto(s)
Antineoplásicos/farmacología , Citidina/análogos & derivados , Línea Celular Tumoral , Citidina/farmacología , Citidina Desaminasa/metabolismo , ADN/metabolismo , Metilasas de Modificación del ADN/metabolismo , Humanos , ARN/metabolismo , Uridina Quinasa/metabolismo
9.
Eur J Pharm Sci ; 43(4): 217-24, 2011 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-21565270

RESUMEN

A series of novel N(10)-substituted acridone derivatives bearing alkyl side-chain with tertiary amine groups at the terminal position were evaluated for their in vitro cytotoxic effects against drug sensitive and resistant cancer cell lines. All the molecules were designed on the basis of hydrogen bond acceptors, carbonyl, fluoro groups with precise spatial separation and structural features of lipophilicity, positive charge at neutral pH and presence of aromatic rings. The in vitro cytotoxic effects in comparison with reference drugs doxorubicin (DX) and C(1311) against cancer cell lines SW 1573, SW 1573 2R 160 (Pg-P expressing) which are non-small cell lung cancer cells, human embryo kidney cells HEK 293, HEK 293 MRP4, HEK 293 MRP5i, human promyelocytic leukemia sensitive cell line HL-60, including its multidrug cross-resistant of two main (P-gp and MRP) phenotype sublines vincristine resistant HL-60/VINC and doxorubicin resistant HL-60/DX cancer cell lines are presented. Compounds 14, 15 and 16 exhibited highest cytotoxicity among the derivatives. On the other hand, the in vitro cytotoxic activity of compound 14 (with butyl side-chain and tertiary amino group ß-hydroxy ethyl piperizine) against resistant cancer cell lines indicate that it might be a promising new hit for further development as an anti-MDR agent. The non-covalent interaction of these molecules with DNA duplexes have been investigated by ESI-MS technique. The results indicate, these acridone derivatives interact with duplex DNA by intercalation, possesses higher affinity to GC than AT base pairs of the DNA and they could not interact non-covalently with the minor grooves of the DNA. The ability of acridones to inhibit calmodulin dependent cAMP phosphodiesterase has been determined. The results suggest that acridones inhibit the Ca(2+)/calmodulin stimulated cAMP-phosphodiesterase activity and have no direct effects on the enzyme itself and a strong correlation between calmodulin inhibition and cytotoxicity against HL-60/VINC and HL-60/DX MDR cancer cell lines.


Asunto(s)
Acridonas/química , Acridonas/farmacología , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Aminoacridinas/farmacología , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Línea Celular Tumoral , ADN/química , ADN/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Células HEK293 , Células HL-60 , Humanos , Masculino , Relación Estructura-Actividad
10.
Arch Pharm (Weinheim) ; 342(11): 640-50, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19856333

RESUMEN

A series of 2-fluoro N(10)-substituted acridone derivatives with varying alkyl side chain length with propyl, butyl substitution, and a tertiary amine group at the terminal end of the alkyl side chain were synthesized and screened against cancer cell lines SW 1573, SW 1573 2R 160 (P-gp substrate) which are non-small lung cancer cell lines, MCF-7, MCF-7/MR (BCRP substrate) are breast cancer cell lines, 2008 WT, 2008MRP1, 2008MRP2, 2008MRP3 are ovarian cancer cell lines, and human embryo kidney cell lines like HEK293, HEK293 MRP4, and HEK293 MRP5i. The propyl-series compounds showed lipophilicity in the range of 1.93 to 4.40 and the butyl series in the range of 2.37 to 4.78. The compounds 4, 7, and 8 showed good cytotoxicity against the 60 human cancer cell line panel of the National Cancer Institute, USA. The compounds 14 and 15 showed a better cytotoxicity in most of the cancer cell lines compared to other compounds tested. The DNA-binding properties of the compounds were evaluated based on their affinity or intercalation with CT-DNA measured with absorption titration. The compound 11 bearing planar tricyclic ring linked with a butyl methylpiperazino side chain showed the highest binding affinity with a binding constant (K(i)) of 10.38 x 10 M(-1). Evaluation of the compounds in cell lines with an overexpression of various multidrug resistance-related protein (MRP), P-glycoprotein (P-gp), or Breast Cancer Resistance Protein (BCRP) showed that all compounds are not substrates for any of these transporters.


Asunto(s)
Acridonas/síntesis química , Sustancias Intercalantes/síntesis química , Acridonas/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Sustancias Intercalantes/farmacología , Relación Estructura-Actividad
11.
Mol Cancer Ther ; 8(3): 655-64, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19240161

RESUMEN

As cellular folate levels seem to have a different effect on cancer cells from different origins, we extended our initial study to a broader panel of cancer cells. BCRP and MRP1-5 expression was determined in KB, OVCAR-3, IGROV-1, ZR75-1/R/MTX, SCC-11B, SCC-22B, and WiDr either grown in standard RPMI 1640 containing 2.3 micromol/L supraphysiologic concentration of folic acid [high folate (HF)] or adapted to more physiologic concentrations [1-5 nmol/L folic acid or leucovorin; low folate (LF)]. Compared with the HF counterparts, KB LF cells displayed 16.1-fold increased MRP3 and OVCAR-3 LF cells showed 4.8-fold increased MRP4 mRNA levels along with increased MRP3 and MRP4 protein expression, respectively. A marked increase on BCRP protein and mRNA expression was observed in WiDr LF cells. These cells acquired approximately 2-fold resistance to mitoxantrone compared with the HF cell line, a phenotype that could be reverted by the BCRP inhibitor Ko143. Of note, WiDr cells expressed BCRP in the intracellular compartment, similarly to what we have described for Caco-2 cells. Our results provide further evidence for an important role of cellular folate status in the modulation of the expression of multidrug resistance transporters in cancer cells. We show that up-regulation of intracellularly localized BCRP in response to adaptation to LF conditions may be a common feature within a panel of colon cancer cell lines. Under these circumstances, folate supplementation might improve the efficacy of chemotherapeutic drugs by decreasing BCRP expression.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Ácido Fólico/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes MDR , Proteínas de Neoplasias/genética , Neoplasias/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Antineoplásicos/farmacología , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Ácido Fólico/metabolismo , Ácido Fólico/fisiología , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mitoxantrona/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Distribución Tisular
12.
Int J Cancer ; 123(7): 1712-20, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18623116

RESUMEN

Folates can induce the expression and activity of the breast-cancer-resistance-protein (BCRP) and the multidrug-resistance-protein-1 (MRP1). Our aim was to study the time-dependent effect of folate deprivation/supplementation on (i) BCRP and MRP expression and (ii) on drug resistance mediated by these transporters. Therefore Caco-2 colon cancer cells usually grown in standard RPMI-medium containing supraphysiological folic acid (FA) concentrations (2.3 muM; high-folate, HF) were gradually adapted to more physiological folate concentrations (1 nM leucovorin (LV) or 1 nM FA; low-folate, LF), resulting in the sublines Caco-2-LF/LV and Caco-2-LF/FA. Caco-2-LF/LV and LF/FA cells exhibited a maximal increase of 5.2- and 9.6-fold for BCRP-mRNA and 3.9- and 5.7-fold for BCRP protein expression, respectively, but no major changes on MRP expression. Overexpression of BCRP in the LF-cells resulted in 3.6- to 6.3-fold resistance to mitoxantrone (MR), which was completely reverted by the BCRP inhibitor Ko143. On the other hand, LF-adapted cells were markedly more sensitive to methotrexate than the HF-counterpart, both after 4-hr (9,870- and 23,923-fold for Caco-2-LF/LV and LF/FA, respectively) and 72-hr (11- and 22-fold for Caco-2-LF/LV and LF/FA, respectively) exposure. Immunofluorescent staining observed with a confocal-laser-scan-microscope revealed that in Caco-2 cells (both HF and LF), BCRP is mainly located in the cytoplasm. In conclusion, folate deprivation induces BCRP expression associated with MR resistance in Caco-2 cells. The intracellular localization of BCRP in these cells suggests that this transporter is not primarily extruding its substrates out of the cell, but rather to an intracellular compartment where folates can be kept as storage.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Antineoplásicos/farmacología , Ácido Fólico/administración & dosificación , Mitoxantrona/farmacología , Proteínas de Neoplasias/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Células CACO-2 , Resistencia a Antineoplásicos , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , ARN Mensajero/genética
13.
Biochem Pharmacol ; 76(1): 53-61, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18508032

RESUMEN

Oxaliplatin is used for treatment of colon cancer in combination with 5-fluorouracil or irinotecan. Oxaliplatin has similar, but also different resistant mechanisms as cisplatin. We studied the activity of oxaliplatin in ovarian and colon cancer cells with different resistance patterns to cisplatin. The 40-fold cisplatin-resistant cell line ADDP was only 7.5-fold resistant to oxaliplatin. The gemcitabine-resistant AG6000 cell line, 9-fold resistant to cisplatin, was not cross-resistant. LoVo-175X2, with mutant p53 showed no resistance compared to the empty vector control. However, LoVo-Li, with inactive p53, was 3.6-fold resistant corresponding to decreased accumulation and Pt adducts. Accumulation and DNA adducts formation showed no significant correlation with oxaliplatin sensitivity. Cell cycle distribution after exposure to oxaliplatin showed arrest in G2/M (A2780) or in S-phase (LoVo-92) for wt-p53 cells. ADDP and LoVo-Li showed G1 arrest followed by S-phase arrest and no changes in distribution, respectively. The cell cycle related proteins Cyclins A and B1 and (p)CDC25C were marginally affected by oxaliplatin. Expression of hCTR1 was decreased in ADDP, LoVo-Li and AG6000, OCT1 decreased in ADDP and AG6000 and OCT3 in LoVo-175X2, compared to the parental cell lines. In ADDP and LoVo-175X2 ATP7A and B were decreased but were increased in AG6000. From this study it can be concluded that changes in cell cycle distribution were cell line dependent and not related to changes in expression of Cyclin A or B1. Oxaliplatin accumulation was related to hCTR1 and, at low concentration, ATP7A to DNA adducts formation while the retention was related to hCTR1, OCT2 and ATP7B.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/patología , Compuestos Organoplatinos/farmacología , Neoplasias Ováricas/patología , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular Tumoral , Aductos de ADN , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Oxaliplatino
14.
Cancer Chemother Pharmacol ; 62(6): 937-48, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18283461

RESUMEN

Murine L1210 leukaemia cells expressing either the reduced folate carrier (RFC) or the membrane folate receptor (MFR) were studied in vitro and in vivo to assess the dynamics of membrane transport of two categories antifolates; folate-based inhibitors of dihydrofolate reductase (methotrexate, edatrexate, aminopterin, PT523, and PT644) and thymidylate synthase (TS) [CB3717, raltitrexed, plevitrexed (BGC9331), pemetrexed and GW1843]. The potency of in situ inhibition of TS was used as an endpoint to analyze the in vitro dynamics of RFC/MFR-membrane transport of these antifolates. Both for L1210-RFC and L1210-MFR cells, the potency of in situ TS inhibition was closely correlated with increasing affinities of these transporters for the antifolates (r = 0.64, P < 0.05 and r = -0.65, P < 0.05, respectively). Within the group of antifolates for which MFR had a low binding affinity, those that had the ability to become polyglutamylated, were more potent inhibitors of TS in situ activity than non-polyglutamatable antifolates. In vivo activity of methotrexate, edatrexate, raltitrexed and pemetrexed was assessed in L1210-RFC and L1210-MFR bearing mice that were fed either a standard or a folate-deficient chow. Dietary folate depletion significantly reduced the MTD for methotrexate (sevenfold), edatrexate (sevenfold), raltitrexed (50-fold) and pemetrexed (150-fold). Based on increased life spans, antitumor effects of methotrexate and edatrexate were markedly better in L1210-RFC bearing mice on the folate-deficient chow (ILS: 455 and 544%, respectively) than on standard chow (ILS: 213 and 263%, respectively). No therapeutic effects of methotrexate and edatrexate were observed for L1210-MFR bearing mice on either chow condition, which may be consistent with the low binding affinity for MFR. Irrespective of the folate diet status, pemetrexed and raltitrexed were inactive against both L1210-RFC and L1210-MFR bearing mice, which may be due to high circulating plasma thymidine levels. Collectively, this study underscores that modulation of dietary folate status can provide a basis within which the therapeutic effect of antifolates may be further improved.


Asunto(s)
Proteínas Portadoras/metabolismo , Antagonistas del Ácido Fólico/farmacocinética , Leucemia L1210/diagnóstico , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Líquido Ascítico/metabolismo , Transporte Biológico , Línea Celular Tumoral/efectos de los fármacos , Femenino , Receptores de Folato Anclados a GPI , Antagonistas del Ácido Fólico/uso terapéutico , Deficiencia de Ácido Fólico/metabolismo , Técnicas In Vitro , Leucemia L1210/patología , Dosis Máxima Tolerada , Ratones , Ratones Endogámicos DBA , Proteínas de Neoplasias/antagonistas & inhibidores , Ácido Poliglutámico/metabolismo , Proteína Portadora de Folato Reducido , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidilato Sintasa/antagonistas & inhibidores
15.
Cancer Res ; 65(18): 8414-22, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16166320

RESUMEN

ABCG2 is an ATP-binding cassette transporter that confers resistance to various chemotherapeutic agents. Recent studies have established that an Arg (wild-type) to Gly mutation at amino acid 482 in ABCG2 alters substrate specificity. Here, we explored the role of this G482 mutation in antifolate resistance using a clinically relevant 4-hour drug exposure. Stable transfectants overexpressing the mutant G482 transporter displayed 120-, 1,000-, and >6,250-fold resistance to the antifolates methotrexate, GW1843, and Tomudex, respectively, relative to parental human embryonic kidney cells. Moreover, although overexpressing equal transporter levels at the plasma membrane, G482-ABCG2 cells were 6-, 23-, and >521-fold more resistant to methotrexate, GW1843, and Tomudex, respectively, than R482-ABCG2 cells. In contrast, upon a continuous (72-hour) drug exposure, both the G482- and R482-ABCG2 cells lost almost all their antifolate resistance; this result was consistent with the inability of ABCG2 to extrude long-chain antifolate polyglutamates. Ko143, a specific and potent ABCG2 inhibitor reversed methotrexate resistance in both G482- and R482-ABCG2 cells. Consistently, whereas the pool of free methotrexate in parental human embryonic kidney cells was prominent after 4 hours of transport with 1 micromol/L [3H]methotrexate, in R482- and G482-ABCG2 cells, it was minimal. Furthermore, G482-ABCG2 cells contained marked decreases in the di- and triglutamate species of [3H]methotrexate at 4 hours of incubation with methotrexate and in the tetra- and pentaglutamates at 24 hours. These changes were not associated with any significant decrease in folylypoly-gamma-glutamate synthetase activity. These results provide the first evidence that the G482-ABCG2 mutation confers high-level resistance to various hydrophilic antifolates.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Antagonistas del Ácido Fólico/farmacología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/biosíntesis , Línea Celular , Membrana Celular/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Antagonistas del Ácido Fólico/farmacocinética , Humanos , Metotrexato/análogos & derivados , Metotrexato/farmacocinética , Metotrexato/farmacología , Mutación , Proteínas de Neoplasias/biosíntesis , Ácido Poliglutámico/análogos & derivados , Ácido Poliglutámico/farmacocinética , Ácido Poliglutámico/farmacología , Fracciones Subcelulares/metabolismo , Transfección , Tritio
16.
Cancer Res ; 65(10): 4425-30, 2005 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15899835

RESUMEN

Members of the multidrug resistance protein family, notably MRP1-4/ABCC1-4, and the breast cancer resistance protein BCRP/ABCG2 have been recognized as cellular exporters for the folate antagonist methotrexate (MTX). Here we show that MRP5/ABCC5 is also an antifolate and folate exporter based on the following evidence: (a) Using membrane vesicles from HEK293 cells, we show that MRP5 transports both MTX (KM = 1.3 mmol/L and VMAX = 780 pmol per mg protein per minute) and folic acid (KM = 1.0 mmol/L and VMAX = 875 pmol per mg protein per minute). MRP5 also transports MTX-glu2 (KM = 0.7 mmol/L and VMAX = 450 pmol per mg protein per minute) but not MTX-glu3. (b) Both accumulation of total [3H]MTX and of MTX polyglutamates were significantly reduced in MRP5 overexpressing cells. (c) Cell growth inhibition studies with MRP5 transfected HEK293 cells showed that MRP5 conferred high-level resistance (>160-fold) against the antifolates MTX, GW1843, and ZD1694 (raltitrexed) in short-term (4 hours) incubations with high drug concentrations; this resistance was proportional to the MRP5 level. (d) MRP5-mediated resistance (8.5- and 2.1-fold) was also found in standard long-term incubations (72 hours) at low concentrations of ZD1694 and GW1843. These results show the potential of MRP5 to mediate transport of (anti)folates and contribute to resistance against antifolate drugs.


Asunto(s)
Antagonistas del Ácido Fólico/farmacocinética , Ácido Fólico/farmacocinética , Metotrexato/análogos & derivados , Metotrexato/farmacocinética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Ácido Poliglutámico/análogos & derivados , Transporte Biológico , Línea Celular , Humanos , Ácido Poliglutámico/farmacocinética , Especificidad por Sustrato
17.
Blood ; 104(13): 4194-201, 2004 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-15308564

RESUMEN

Methotrexate (MTX) is one of the leading drugs in the treatment of leukemia, but extensive metabolism to 7-hydroxymethotrexate (7-OHMTX) can limit its therapeutic efficacy. In this study we investigated whether 7-OHMTX itself can provoke anti-folate resistance that may further disrupt MTX efficacy. For this purpose, we developed resistance to 7-OHMTX as well as MTX in 2 human leukemia cell lines (CCRF-CEM and MOLT-4) by stepwise exposure to increasing concentrations of 7-OHMTX and MTX. Consequently, both leukemia cell lines displayed marked levels of resistance to 7-OHMTX (> 10-fold) and MTX (> 75-fold). The underlying mechanism of resistance in the MTX-exposed cells was a marked decrease (> 10-fold) in reduced folate carrier (RFC)-mediated cellular uptake of MTX. This was associated with transcriptional silencing of the RFC gene in MTX-resistant CCRF-CEM cells. In contrast, the molecular basis for the resistance to 7-OHMTX was due solely to a marked decreased (> 95%) in folylpolyglutamate synthetase (FPGS) activity, which conferred more than 100-fold MTX resistance upon a short-term exposure to this drug. This is the first demonstration that 7-OHMTX can provoke distinct modalities of antifolate resistance compared with the parent drug MTX. The implications of this finding for MTX efficacy and strategies to circumvent MTX resistance are discussed.


Asunto(s)
Metotrexato/análogos & derivados , Metotrexato/farmacología , Antimetabolitos Antineoplásicos/farmacología , Transporte Biológico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Glutamina/metabolismo , Humanos , Leucemia , Metotrexato/farmacocinética
18.
Biochem Pharmacol ; 67(8): 1541-8, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15041471

RESUMEN

The Multidrug Resistance Protein MRP1 (ABCC1) can confer resistance to a variety of therapeutic drugs. In addition, MRP1/ABCC1 mediates cellular export of natural folates, such as folic acid and l-leucovorin. In this study we determined whether cellular folate status affected the functional activity of MRP1/ABCC1 mediated efflux of an established substrate, the anthracycline daunorubicin (DNR). As a model system we used the human ovarian carcinoma cell line 2008wt, and its MRP1/ABCC1 transfected subline 2008/MRP1. Both types of these moderate- and high-MRP1/ABCC1 expressing cells displayed efflux of DNR when maintained in standard culture media (2.3microM folic acid). The initial total cellular DNR efflux rate in 2008/MRP1 cells was approximately 2-fold higher compared to 2008wt cells. This efflux consisted of MRP1/ABCC1 mediated transport, possibly non-MRP1 mediated transport, as well as passive diffusion. Benzbromarone, a specific MRP1 inhibitor, decreased the initial efflux rate in 2008/MRP1 cells (4-fold) and in 2008wt cells (2-fold). When 2008/MRP1 cells were challenged for 2 days in folate-free medium, total cellular DNR efflux was decreased to 43% of the initial efflux rate under folate-rich conditions. In 2008wt cells DNR efflux was decreased to 84% of the folate-rich conditions. Benzbromarone did not inhibit DNR efflux after the folate-free period in both cell lines. Repletion of folate by a 2-24hr exposure to 2.5microM l-leucovorin or folic acid resulted in a complete restoration of DNR efflux. In contrast, expression of MRP1/ABCC1 protein was not changed significantly during the folate-free period or the repletion-period, nor were cellular ATP or ADP pools. In conclusion, this study demonstrates that the cellular folate status can influence the transport activity of MRP1/ABCC1. These results have potentially important implications in the understanding of the (patho-)physiological roles of MRP1/ABCC1, and possibly other ABC transporter proteins in cellular folate homeostasis and drug resistance.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Ácido Fólico/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Antibióticos Antineoplásicos/farmacocinética , Transporte Biológico , Daunorrubicina/farmacocinética , Femenino , Deficiencia de Ácido Fólico/metabolismo , Expresión Génica , Humanos , Nucleótidos/metabolismo , Neoplasias Ováricas , Factores de Tiempo , Células Tumorales Cultivadas
19.
Biochem Pharmacol ; 65(5): 765-71, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12628490

RESUMEN

Previously, we reported that the multidrug resistance proteins MRP1, MRP2 and MRP3 confer resistance to therapeutic antifolates by mediating their cellular extrusion. We now determined whether MRPs also play a role in controlling cellular homeostasis of natural folates. In MRP1, MRP2 and MRP3-transfected 2008 human ovarian carcinoma cells total cellular folate content was 32-38% lower than in 2008 cells (105+/-14pmolfolate/mgprotein) when grown in medium containing 2.3 microM folic acid (FA). Under these conditions cellular growth rates were not compromised. However, when cells were challenged under folate-depleted conditions with a short exposure (4 hr) to FA or leucovorin, MRP1 and MRP3 overexpressing cells were impaired in their growth. In contrast to wild-type cells, MRP1 transfected cells retained only 60% of the maximum growth when exposed to 500 nM leucovorin or 500 microM FA. For 2008/MRP1 and 2008/MRP3 cells FA growth stimulation capacity was dramatically decreased when, during a 4 hr exposure, metabolism into rapidly polyglutamatable and retainable dihydrofolate was blocked by the dihydrofolate reductase inhibitor trimetrexate. To retain growth under such conditions MRP1 overexpressing cells required much higher concentrations of FA (EC(50) > 500 microM) compared to 2008 cells (EC(50): 12 microM). These results suggest that down- and up-regulation of MRP1 (and MRP3) expression can influence cellular folate homeostasis, in particular when cellular retention by polyglutamylation of folates is attenuated.


Asunto(s)
Ácido Fólico/fisiología , Homeostasis/fisiología , Proteínas de Transporte de Membrana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/fisiología , División Celular/fisiología , Ácido Fólico/metabolismo , Humanos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Células Tumorales Cultivadas
20.
J Biol Chem ; 278(9): 6680-6, 2003 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-12486126

RESUMEN

We studied the molecular basis of the up to 46-fold increased accumulation of folates and methotrexate (MTX) in human leukemia CEM-7A cells established by gradual deprivation of leucovorin (LCV). CEM-7A cells consequently exhibited 10- and 68-fold decreased LCV and folic acid growth requirements and 23-25-fold hypersensitivity to MTX and edatrexate. Although CEM-7A cells displayed a 74-86-fold increase in the reduced folate carrier (RFC)-mediated influx of LCV and MTX, RFC overexpression per se cannot induce a prominently increased folate/MTX accumulation because RFC functions as a nonconcentrative anion exchanger. We therefore explored the possibility that folate efflux activity mediated by members of the multidrug resistance protein (MRP) family was impaired in CEM-7A cells. Parental CEM cells expressed substantial levels of MRP1, MRP4, poor MRP5 levels, whereas MRP2, MRP3 and breast cancer resistance protein were undetectable. In contrast, CEM-7A cells lost 95% of MRP1 levels while retaining parental expression of MRP4 and MRP5. Consequently, CEM-7A cells displayed a 5-fold decrease in the [(3)H]folic acid efflux rate constant, which was identical to that obtained with parental CEM cells, when their folic acid efflux was blocked (78%) with probenecid. Furthermore, when compared with parental CEM, CEM-7A cells accumulated 2-fold more calcein fluorescence. Treatment of parental cells with the MRP1 efflux inhibitors MK571 and probenecid resulted in a 60-100% increase in calcein fluorescence. In contrast, these inhibitors failed to alter the calcein fluorescence in CEM-7A cells, which markedly lost MRP1 expression. Replenishment of LCV in the growth medium of CEM-7A cells resulted in resumption of normal MRP1 expression. These results establish for the first time that MRP1 is the primary folate efflux route in CEM leukemia cells and that the loss of folate efflux activity is an efficient means of markedly augmenting cellular folate pools. These findings suggest a functional role for MRP1 in the maintenance of cellular folate homeostasis.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/biosíntesis , Ácido Fólico/metabolismo , Transporte Biológico , Western Blotting , División Celular , Línea Celular , Membrana Celular/metabolismo , Citometría de Flujo , Fluoresceínas/farmacología , Ácido Fólico/farmacología , Humanos , Leucovorina/farmacología , Metotrexato/farmacología , Microscopía Fluorescente , Mutación , Factores de Tiempo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...