Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968120

RESUMEN

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Asunto(s)
Quinasas DyrK , Proteínas Hedgehog , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Transducción de Señal , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc , Animales , Proteína Gli3 con Dedos de Zinc/metabolismo , Proteína Gli3 con Dedos de Zinc/genética , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Ratones , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Humanos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Proliferación Celular , Cilios/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Nucleares , Proteínas Represoras
2.
Hum Mol Genet ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751342

RESUMEN

Primary cilia are antenna-like structures protruding from the surface of various eukaryotic cells, and have distinct protein compositions in their membranes. This distinct protein composition is maintained by the presence of the transition zone (TZ) at the ciliary base, which acts as a diffusion barrier between the ciliary and plasma membranes. Defects in cilia and the TZ are known to cause a group of disorders collectively called the ciliopathies, which demonstrate a broad spectrum of clinical features, such as perinatally lethal Meckel syndrome (MKS), relatively mild Joubert syndrome (JBTS), and nonsyndromic nephronophthisis (NPHP). Proteins constituting the TZ can be grouped into the MKS and NPHP modules. The MKS module is composed of several transmembrane proteins and three soluble proteins. TMEM218 was recently reported to be mutated in individuals diagnosed as MKS and JBTS. However, little is known about how TMEM218 mutations found in MKS and JBTS affect the functions of cilia. In this study, we found that ciliary membrane proteins were not localized to cilia in TMEM218-knockout cells, indicating impaired barrier function of the TZ. Furthermore, the exogenous expression of JBTS-associated TMEM218 variants but not MKS-associated variants in TMEM218-knockout cells restored the localization of ciliary membrane proteins. In particular, when expressed in TMEM218-knockout cells, the TMEM218(R115H) variant found in JBTS was able to restore the barrier function of cells, whereas the MKS variant TMEM218(R115C) could not. Thus, the severity of symptoms of MKS and JBTS individuals appears to correlate with the degree of their ciliary defects at the cellular level.

3.
Bioconjug Chem ; 34(11): 2055-2065, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37883660

RESUMEN

Immunogenic responses by protein therapeutics often lead to reduced therapeutic effects and/or adverse effects via the generation of neutralizing antibodies and/or antidrug antibodies (ADA). Mirror-image proteins of the variable domain of the heavy chain of the heavy chain antibody (VHH) are potential novel protein therapeutics with high-affinity binding to target proteins and reduced immunogenicity because these mirror-image VHHs (d-VHHs) are less susceptible to proteolytic degradation in antigen-presenting cells (APCs). In this study, we investigated the preparation protocols of d-VHHs and their biological properties, including stereoselective target binding and immunogenicity. Initially, we established a facile synthetic process of two model VHHs [anti-GFP VHH and PMP12A2h1 (monomeric VHH of caplacizumab)] and their mirror-image proteins by three-step native chemical ligations (NCLs) from four peptide segments. The folded synthetic VHHs (l-anti-GFP VHH and l-PMP12A2h1) bound to the target proteins (EGFP and vWF-A1 domain, respectively), while their mirror-image proteins (d-anti-GFP VHH and d-PMP12A2h1) showed no binding to the native proteins. For biodistribution studies, l-VHH and d-VHH with single radioactive indium diethylenetriamine-pentaacid (111In-DTPA) labeling at the C-terminus were designed and synthesized by the established protocol. The distribution profiles were essentially similar between l-VHH and d-VHH, in which the probes accumulated in the kidney within 15 min after intravenous administration in mice, because of the small molecular size of VHHs. Comparative assessment of the immunogenicity responses revealed that d-VHH-induced levels of ADA generation were significantly lower than those of native VHH, regardless of the peptide sequences and administration routes. The resulting scaffold investigated should be applicable in the design of d-VHHs with various C-terminal CDR3 sequences, which can be identified by screening using display technologies.


Asunto(s)
Camélidos del Nuevo Mundo , Anticuerpos de Dominio Único , Ratones , Animales , Preparaciones Farmacéuticas , Distribución Tisular , Cadenas Pesadas de Inmunoglobulina , Anticuerpos Neutralizantes , Camélidos del Nuevo Mundo/metabolismo
4.
Hum Mol Genet ; 32(19): 2887-2900, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37427975

RESUMEN

Owing to their crucial roles in development and homeostasis, defects in cilia cause ciliopathies with diverse clinical manifestations. The intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes, mediates not only the intraciliary bidirectional trafficking but also import and export of ciliary proteins together with the kinesin-2 and dynein-2 motor complexes. The BBSome, containing eight subunits encoded by causative genes of Bardet-Biedl syndrome (BBS), connects the IFT machinery to ciliary membrane proteins to mediate their export from cilia. Although mutations in subunits of the IFT-A and dynein-2 complexes cause skeletal ciliopathies, mutations in some IFT-B subunits are also known to cause skeletal ciliopathies. We here show that compound heterozygous variations of an IFT-B subunit, IFT81, found in a patient with skeletal ciliopathy cause defects in its interactions with other IFT-B subunits, and in ciliogenesis and ciliary protein trafficking when one of the two variants was expressed in IFT81-knockout (KO) cells. Notably, we found that IFT81-KO cells expressing IFT81(Δ490-519), which lacks the binding site for the IFT25-IFT27 dimer, causes ciliary defects reminiscent of those found in BBS cells and those in IFT74-KO cells expressing a BBS variant of IFT74, which forms a heterodimer with IFT81. In addition, IFT81-KO cells expressing IFT81(Δ490-519) in combination with the other variant, IFT81 (L645*), which mimics the cellular conditions of the above skeletal ciliopathy patient, demonstrated essentially the same phenotype as those expressing only IFT81(Δ490-519). Thus, our data indicate that BBS-like defects can be caused by skeletal ciliopathy variants of IFT81.


Asunto(s)
Síndrome de Bardet-Biedl , Ciliopatías , Humanos , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Cilios/genética , Cilios/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Dineínas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteínas Musculares/metabolismo , Proteínas/metabolismo
5.
Biol Open ; 12(7)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37309605

RESUMEN

Within cilia, the dynein-2 complex needs to be transported as an anterograde cargo to achieve its role as a motor to drive retrograde trafficking of the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes. We previously showed that interactions of WDR60 and the DYNC2H1-DYNC2LI1 dimer of dynein-2 with multiple IFT-B subunits, including IFT54, are required for the trafficking of dynein-2 as an IFT cargo. However, specific deletion of the IFT54-binding site from WDR60 demonstrated only a minor effect on dynein-2 trafficking and function. We here show that the C-terminal coiled-coil region of IFT54, which participates in its interaction with the DYNC2H1-DYNC2LI1 dimer of dynein-2 and with IFT20 of the IFT-B complex, is essential for IFT-B function, and suggest that the IFT54 middle linker region between the N-terminal WDR60-binding region and the C-terminal coiled-coil is required for ciliary retrograde trafficking, probably by mediating the effective binding of IFT-B to the dynein-2 complex, and thereby ensuring dynein-2 loading onto the anterograde IFT trains. The results presented here agree with the notion predicted from the previous structural models that the dynein-2 loading onto the anterograde IFT train relies on intricate, multivalent interactions between the dynein-2 and IFT-B complexes.


Asunto(s)
Cilios , Dineínas , Dineínas/química , Dineínas/metabolismo , Cilios/metabolismo , Citoesqueleto/metabolismo , Transporte Biológico , Unión Proteica
6.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36632779

RESUMEN

The dynein-2 complex must be transported anterogradely within cilia to then drive retrograde trafficking of the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes. Here, we screened for potential interactions between the dynein-2 and IFT-B complexes and found multiple interactions among the dynein-2 and IFT-B subunits. In particular, WDR60 (also known as DYNC2I1) and the DYNC2H1-DYNC2LI1 dimer from dynein-2, and IFT54 (also known as TRAF3IP1) and IFT57 from IFT-B contribute to the dynein-2-IFT-B interactions. WDR60 interacts with IFT54 via a conserved region N-terminal to its light chain-binding regions. Expression of the WDR60 constructs in WDR60-knockout (KO) cells revealed that N-terminal truncation mutants lacking the IFT54-binding site fail to rescue abnormal phenotypes of WDR60-KO cells, such as aberrant accumulation of the IFT machinery around the ciliary tip and on the distal side of the transition zone. However, a WDR60 construct specifically lacking just the IFT54-binding site substantially restored the ciliary defects. In line with the current docking model of dynein-2 with the anterograde IFT trains, these results indicate that extensive interactions involving multiple subunits from the dynein-2 and IFT-B complexes participate in their connection.


Asunto(s)
Cilios , Dineínas , Cilios/metabolismo , Dineínas/genética , Dineínas/metabolismo , Transporte Biológico , Citoesqueleto/metabolismo , Dominios Proteicos , Flagelos/metabolismo
7.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36268591

RESUMEN

The primary cilium is a sensory organelle, receiving signals from the external environment and relaying them into the cell. Mutations in proteins required for transport in the primary cilium result in ciliopathies, a group of genetic disorders that commonly lead to the malformation of organs such as the kidney, liver and eyes and skeletal dysplasias. The motor proteins dynein-2 and kinesin-2 mediate retrograde and anterograde transport, respectively, in the cilium. WDR34 (also known as DYNC2I2), a dynein-2 intermediate chain, is required for the maintenance of cilia function. Here, we investigated WDR34 mutations identified in Jeune syndrome, short-rib polydactyly syndrome and asphyxiating thoracic dysplasia patients. There is a poor correlation between genotype and phenotype in these cases, making diagnosis and treatment highly complex. We set out to define the biological impacts on cilia formation and function of WDR34 mutations by stably expressing the mutant proteins in WDR34-knockout cells. WDR34 mutations led to different spectrums of phenotypes. Quantitative proteomics demonstrated changes in dynein-2 assembly, whereas initiation and extension of the axoneme, localization of intraflagellar transport complex-B proteins, transition zone integrity and Hedgehog signalling were also affected.


Asunto(s)
Dineínas , Síndrome de Ellis-Van Creveld , Humanos , Dineínas/genética , Dineínas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Hedgehog/metabolismo , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/metabolismo , Cilios/genética , Cilios/metabolismo , Mutación/genética
8.
Mol Biol Cell ; 33(13): ar126, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36074075

RESUMEN

The intraflagellar transport (IFT) machinery mediates the import and export of ciliary proteins across the ciliary gate, as well as bidirectional protein trafficking within cilia. In addition to ciliary anterograde protein trafficking, the IFT-B complex participates in the export of membrane proteins together with the BBSome, which consists of eight subunits encoded by the causative genes of Bardet-Biedl syndrome (BBS). The IFT25-IFT27/BBS19 dimer in the IFT-B complex constitutes its interface with the BBSome. We show here that IFT25-IFT27 and the RABL2 GTPase bind the IFT74/BBS22-IFT81 dimer of the IFT-B complex in a mutually exclusive manner. Cells expressing GTP-locked RABL2 [RABL2(Q80L)], but not wild-type RABL2, phenocopied IFT27-knockout cells, that is, they demonstrated BBS-associated ciliary defects, including accumulation of LZTFL1/BBS17 and the BBSome within cilia and the suppression of export of the ciliary GPCRs GPR161 and Smoothened. RABL2(Q80L) enters cilia in a manner dependent on the basal body protein CEP19, but its entry into cilia is not necessary for causing BBS-associated ciliary defects. These observations suggest that GTP-bound RABL2 is likely to be required for recruitment of the IFT-B complex to the ciliary base, where it is replaced with IFT25-IFT27.


Asunto(s)
Síndrome de Bardet-Biedl , Cilios , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Flagelos/metabolismo , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/genética
9.
Mol Biol Cell ; 33(9): ar83, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35704471

RESUMEN

Bidirectional protein trafficking within cilia is mediated by the intraflagellar transport (IFT) machinery, which contains the IFT-A and IFT-B complexes powered by the kinesin-2 and dynein-2 motors. Mutations in genes encoding subunits of the IFT-A and dynein-2 complexes cause skeletal ciliopathies. Some subunits of the IFT-B complex, including IFT52, IFT80, and IFT172, are also mutated in skeletal ciliopathies. We here show that IFT52 variants found in individuals with short-rib polydactyly syndrome (SRPS) are compromised in terms of formation of the IFT-B holocomplex from two subcomplexes and its interaction with heterotrimeric kinesin-II. IFT52-knockout (KO) cells expressing IFT52 variants that mimic the cellular conditions of individuals with SRPS demonstrated mild ciliogenesis defects and a decrease in ciliary IFT-B level. Furthermore, in IFT52-KO cells expressing an SRPS variant of IFT52, ciliary tip localization of ICK/CILK1 and KIF17, both of which are likely to be transported to the tip via binding to the IFT-B complex, was significantly impaired. Altogether these results indicate that impaired anterograde trafficking caused by a decrease in the ciliary level of IFT-B or in its binding to kinesin-II underlies the ciliary defects found in skeletal ciliopathies caused by IFT52 variations.


Asunto(s)
Ciliopatías , Dineínas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cilios/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Humanos , Mutación/genética , Transporte de Proteínas
10.
Mol Biol Cell ; 33(9): ar79, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35609210

RESUMEN

Primary cilia are antenna-like organelles that contain specific proteins, and are crucial for tissue morphogenesis. Anterograde and retrograde trafficking of ciliary proteins are mediated by the intraflagellar transport (IFT) machinery. BROMI/TBC1D32 interacts with CCRK/CDK20, which phosphorylates and activates the intestinal cell kinase (ICK)/CILK1 kinase, to regulate the change in direction of the IFT machinery at the ciliary tip. Mutations in BROMI, CCRK, and ICK in humans cause ciliopathies, and mice defective in these genes are also known to demonstrate ciliopathy phenotypes. We show here that BROMI interacts not only with CCRK but also with CFAP20, an evolutionarily conserved ciliary protein, and with FAM149B1/ Joubert syndrome (JBTS)36, a protein in which mutations cause JBTS. In addition, we show that FAM149B1 interacts directly with CCRK as well as with BROMI. Ciliary defects observed in CCRK-knockout (KO), BROMI-KO, and FAM149B1-KO cells, including abnormally long cilia and accumulation of the IFT machinery and ICK at the ciliary tip, resembled one another, and BROMI mutants that are defective in binding to CCRK and CFAP20 were unable to rescue the ciliary defects of BROMI-KO cells. These data indicate that CCRK, BROMI, FAM149B1, and probably CFAP20 altogether regulate the IFT turnaround process under the control of ICK.


Asunto(s)
Ciliopatías , Anomalías del Ojo , Enfermedades Renales Quísticas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Transporte Biológico , Cilios/metabolismo , Ciliopatías/metabolismo , Quinasas Ciclina-Dependientes , Proteínas del Citoesqueleto , Anomalías del Ojo/metabolismo , Humanos , Enfermedades Renales Quísticas/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas , Transporte de Proteínas , Proteínas/metabolismo , Quinasa Activadora de Quinasas Ciclina-Dependientes
11.
Sci Rep ; 12(1): 31, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997029

RESUMEN

Cilia play crucial roles in sensing and transducing extracellular signals. Bidirectional protein trafficking within cilia is mediated by the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes, with the aid of kinesin-2 and dynein-2 motors. The dynein-2 complex drives retrograde trafficking of the IFT machinery after its transportation to the ciliary tip as an IFT cargo. Mutations in genes encoding the dynein-2-specific subunits (DYNC2H1, WDR60, WDR34, DYNC2LI1, and TCTEX1D2) are known to cause skeletal ciliopathies. We here demonstrate that several pathogenic variants of DYNC2LI1 are compromised regarding their ability to interact with DYNC2H1 and WDR60. When expressed in DYNC2LI1-knockout cells, deletion variants of DYNC2LI1 were unable to rescue the ciliary defects of these cells, whereas missense variants, as well as wild-type DYNC2LI1, restored the normal phenotype. DYNC2LI1-knockout cells coexpressing one pathogenic deletion variant together with wild-type DYNC2LI1 demonstrated a normal phenotype. In striking contrast, DYNC2LI1-knockout cells coexpressing the deletion variant in combination with a missense variant, which mimics the situation of cells of compound heterozygous ciliopathy individuals, demonstrated ciliary defects. Thus, DYNC2LI1 deletion variants found in individuals with skeletal ciliopathies cause ciliary defects when combined with a missense variant, which expressed on its own does not cause substantial defects.


Asunto(s)
Ciliopatías/genética , Dineínas Citoplasmáticas/genética , Eliminación de Gen , Músculo Esquelético/metabolismo , Mutación Missense , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cilios/metabolismo , Ciliopatías/metabolismo , Dineínas Citoplasmáticas/metabolismo , Humanos , Unión Proteica , Transporte de Proteínas
12.
Hum Mol Genet ; 31(10): 1681-1693, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34888642

RESUMEN

The IFT-B complex mediates ciliary anterograde protein trafficking and membrane protein export together with the BBSome. Bardet-Biedl syndrome (BBS) is caused by mutations in not only all BBSome subunits but also in some IFT-B subunits, including IFT74/BBS22 and IFT27/BBS19, which form heterodimers with IFT81 and IFT25, respectively. We found that the IFT25-IFT27 dimer binds the C-terminal region of the IFT74-IFT81 dimer and that the IFT25-IFT27-binding region encompasses the region deleted in the BBS variants of IFT74. In addition, we found that the missense BBS variants of IFT27 are impaired in IFT74-IFT81 binding and are unable to rescue the BBS-like phenotypes of IFT27-knockout (KO) cells. Furthermore, the BBS variants of IFT74 rescued the ciliogenesis defect of IFT74-KO cells, but the rescued cells demonstrated BBS-like abnormal phenotypes. Taken together, we conclude that the impaired interaction between IFT74-IFT81 and IFT25-IFT27 causes the BBS-associated ciliary defects.


Asunto(s)
Síndrome de Bardet-Biedl , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Cilios/genética , Cilios/metabolismo , Proteínas del Citoesqueleto/genética , Flagelos/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas Musculares/genética , Mutación , Unión Proteica
13.
PLoS One ; 16(10): e0258497, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34624068

RESUMEN

CCRK/CDK20 was reported to interact with BROMI/TBC1D32 and regulate ciliary Hedgehog signaling. In various organisms, mutations in the orthologs of CCRK and those of the kinase ICK/CILK1, which is phosphorylated by CCRK, are known to result in cilia elongation. Furthermore, we recently showed that ICK regulates retrograde ciliary protein trafficking and/or the turnaround event at the ciliary tips, and that its mutations result in the elimination of intraflagellar transport (IFT) proteins that have overaccumulated at the bulged ciliary tips as extracellular vesicles, in addition to cilia elongation. However, how these proteins cooperate to regulate ciliary protein trafficking has remained unclear. We here show that the phenotypes of CCRK-knockout (KO) cells closely resemble those of ICK-KO cells; namely, the overaccumulation of IFT proteins at the bulged ciliary tips, which appear to be eliminated as extracellular vesicles, and the enrichment of GPR161 and Smoothened on the ciliary membrane. The abnormal phenotypes of CCRK-KO cells were rescued by the exogenous expression of wild-type CCRK but not its kinase-dead mutant or a mutant defective in BROMI binding. These results together indicate that CCRK regulates the turnaround process at the ciliary tips in concert with BROMI and probably via activating ICK.


Asunto(s)
Proteínas Hedgehog , Cilios , Flagelos/metabolismo , Transporte de Proteínas , Receptor Smoothened
14.
Biol Open ; 10(9)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34447983

RESUMEN

INPP5E, a phosphoinositide 5-phosphatase, localizes on the ciliary membrane via its C-terminal prenyl moiety, and maintains the distinct ciliary phosphoinositide composition. The ARL3 GTPase contributes to the ciliary membrane localization of INPP5E by stimulating the release of PDE6D bound to prenylated INPP5E. Another GTPase, ARL13B, which is localized on the ciliary membrane, contributes to the ciliary membrane retention of INPP5E by directly binding to its ciliary targeting sequence. However, as ARL13B was shown to act as a guanine nucleotide exchange factor (GEF) for ARL3, it is also possible that ARL13B indirectly mediates the ciliary INPP5E localization via activating ARL3. We here show that INPP5E is delocalized from cilia in both ARL3-knockout (KO) and ARL13B-KO cells. However, some of the abnormal phenotypes were different between these KO cells, while others were found to be common, indicating the parallel roles of ARL3 and ARL13B, at least concerning some cellular functions. For several variants of ARL13B, their ability to interact with INPP5E, rather than their ability as an ARL3-GEF, was associated with whether they could rescue the ciliary localization of INPP5E in ARL13B-KO cells. These observations together indicate that ARL13B determines the ciliary localization of INPP5E, mainly by its direct binding to INPP5E.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Cilios/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte de Proteínas/genética , Humanos
15.
Hum Mol Genet ; 30(3-4): 213-225, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33517396

RESUMEN

Primary cilia contain specific proteins to achieve their functions as cellular antennae. Ciliary protein trafficking is mediated by the intraflagellar transport (IFT) machinery containing the IFT-A and IFT-B complexes. Mutations in genes encoding the IFT-A subunits (IFT43, IFT121/WDR35, IFT122, IFT139/TTC21B, IFT140 and IFT144/WDR19) often result in skeletal ciliopathies, including cranioectodermal dysplasia (CED). We here characterized the molecular and cellular defects of CED caused by compound heterozygous mutations in IFT144 [the missense variant IFT144(L710S) and the nonsense variant IFT144(R1103*)]. These two variants were distinct with regard to their interactions with other IFT-A subunits and with the IFT-B complex. When exogenously expressed in IFT144-knockout (KO) cells, IFT144(L710S) as well as IFT144(WT) rescued both moderately compromised ciliogenesis and the abnormal localization of ciliary proteins. As the homozygous IFT144(L710S) mutation was found to cause autosomal recessive retinitis pigmentosa, IFT144(L710S) is likely to be hypomorphic at the cellular level. In striking contrast, the exogenous expression of IFT144(R1103*) in IFT144-KO cells exacerbated the ciliogenesis defects. The expression of IFT144(R1103*) together with IFT144(WT) restored the abnormal phenotypes of IFT144-KO cells. However, the coexpression of IFT144(R1103*) with the hypomorphic IFT144(L710S) variant in IFT144-KO cells, which mimics the genotype of compound heterozygous CED patients, resulted in severe ciliogenesis defects. Taken together, these observations demonstrate that compound heterozygous mutations in IFT144 cause severe ciliary defects via a complicated mechanism, where one allele can cause severe ciliary defects when combined with a hypomorphic allele.


Asunto(s)
Huesos/anomalías , Cilios/metabolismo , Craneosinostosis/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Displasia Ectodérmica/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Huesos/metabolismo , Huesos/fisiopatología , Cilios/patología , Ciliopatías/genética , Ciliopatías/metabolismo , Ciliopatías/fisiopatología , Codón sin Sentido , Craneosinostosis/genética , Craneosinostosis/fisiopatología , Displasia Ectodérmica/genética , Displasia Ectodérmica/fisiopatología , Células HEK293 , Humanos , Mutación Missense
16.
Biol Open ; 10(1)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33372066

RESUMEN

Compositions of proteins and lipids within cilia and on the ciliary membrane are maintained to be distinct from those of the cytoplasm and plasma membrane, respectively, by the presence of the ciliary gate. INPP5E is a phosphoinositide 5-phosphatase that is localized on the ciliary membrane by anchorage via its C-terminal prenyl moiety. In addition, the ciliary membrane localization of INPP5E is determined by the small GTPase ARL13B. However, it remained unclear as to how ARL13B participates in the localization of INPP5E. We here show that wild-type INPP5E, INPP5E(WT), in ARL13B-knockout cells and an INPP5E mutant defective in ARL13B binding, INPP5E(ΔCTS), in control cells were unable to show steady-state localization on the ciliary membrane. However, not only INPP5E(WT) but also INPP5E(ΔCTS) was able to rescue the abnormal localization of ciliary proteins in INPP5E-knockout cells. Analysis using the chemically induced dimerization system demonstrated that INPP5E(WT) in ARL13B-knockout cells and INPP5E(ΔCTS) in control cells were able to enter cilia, but neither was retained on the ciliary membrane due to the lack of the INPP5E-ARL13B interaction. Thus, our data demonstrate that binding of INPP5E to ARL13B is essential for its steady-state localization on the ciliary membrane but is dispensable for its entry into cilia.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Membrana Celular/metabolismo , Cilios/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Factores de Ribosilacion-ADP/genética , Animales , Sistemas CRISPR-Cas , Línea Celular , Técnica del Anticuerpo Fluorescente , Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Modelos Biológicos , Mutación , Fenotipo , Monoéster Fosfórico Hidrolasas/genética , Unión Proteica , Transporte de Proteínas
17.
Mol Biol Cell ; 32(1): 45-56, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33175651

RESUMEN

Cilia sense and transduce extracellular signals via specific receptors. The intraflagellar transport (IFT) machinery mediates not only bidirectional protein trafficking within cilia but also the import/export of ciliary proteins across the ciliary gate. The IFT machinery is known to comprise two multisubunit complexes, namely, IFT-A and IFT-B; however, little is known about how the two complexes cooperate to mediate ciliary protein trafficking. We here show that IFT144-IFT122 from IFT-A and IFT88-IFT52 from IFT-B make major contributions to the interface between the two complexes. Exogenous expression of the IFT88(Δα) mutant, which has decreased binding to IFT-A, partially restores the ciliogenesis defect of IFT88-knockout (KO) cells. However, IFT88(Δα)-expressing IFT88-KO cells demonstrate a defect in IFT-A entry into cilia, aberrant accumulation of IFT-B proteins at the bulged ciliary tips, and impaired import of ciliary G protein-coupled receptors (GPCRs). Furthermore, overaccumulated IFT proteins at the bulged tips appeared to be released as extracellular vesicles. These phenotypes of IFT88(Δα)-expressing IFT88-KO cells resembled those of IFT144-KO cells. These observations together indicate that the IFT-A complex cooperates with the IFT-B complex to mediate the ciliary entry of GPCRs as well as retrograde trafficking of the IFT machinery from the ciliary tip.


Asunto(s)
Cilios/metabolismo , Flagelos/metabolismo , Complejos Multiproteicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Complejos Multiproteicos/química , Unión Proteica , Subunidades de Proteína/metabolismo , Transporte de Proteínas
18.
J Biol Chem ; 295(38): 13363-13376, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32732286

RESUMEN

ICK (also known as CILK1) is a mitogen-activated protein kinase-like kinase localized at the ciliary tip. Its deficiency is known to result in the elongation of cilia and causes ciliopathies in humans. However, little is known about how ICK is transported to the ciliary tip. We here show that the C-terminal noncatalytic region of ICK interacts with the intraflagellar transport (IFT)-B complex of the IFT machinery and participates in its transport to the ciliary tip. Furthermore, total internal reflection fluorescence microscopy demonstrated that ICK undergoes bidirectional movement within cilia, similarly to IFT particles. Analysis of ICK knockout cells demonstrated that ICK deficiency severely impairs the retrograde trafficking of IFT particles and ciliary G protein-coupled receptors. In addition, we found that in ICK knockout cells, ciliary proteins are accumulated at the bulged ciliary tip, which appeared to be torn off and released into the environment as an extracellular vesicle. The exogenous expression of various ICK constructs in ICK knockout cells indicated that the IFT-dependent transport of ICK, as well as its kinase activity and phosphorylation at the canonical TDY motif, is essential for ICK function. Thus, we unequivocally show that ICK transported to the ciliary tip is required for retrograde ciliary protein trafficking and consequently for normal ciliary function.


Asunto(s)
Cilios/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos , Cilios/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas
19.
Mol Biol Cell ; 31(20): 2259-2268, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32726168

RESUMEN

Cilia are plasma membrane protrusions that act as cellular antennae and propellers in eukaryotes. To achieve their sensory and motile functions, cilia maintain protein and lipid compositions that are distinct from those of the cell body. The transition zone (TZ) is a specialized region located at the ciliary base, which functions as a barrier separating the interior and exterior of cilia. The TZ comprises a number of transmembrane and soluble proteins. Meckel syndrome (MKS)1, B9 domain (B9D)1/MKS9, and B9D2/MKS10 are soluble TZ proteins that are encoded by causative genes of MKS and have a B9D in common. We here demonstrate the interaction mode of these B9D proteins to be MKS1-B9D2-B9D1 and demonstrate their interdependent localization to the TZ. Phenotypic analyses of MKS1-knockout (KO) and B9D2-KO cells show that the B9D proteins are involved in, although not essential for, normal cilia biogenesis. Rescue experiments of these KO cells show that formation of the B9D protein complex is crucial for creating a diffusion barrier for ciliary membrane proteins.


Asunto(s)
Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas/metabolismo , Línea Celular , Proteínas del Citoesqueleto/genética , Humanos , Proteínas de la Membrana/metabolismo , Dominios Proteicos , Transporte de Proteínas , Proteínas/genética
20.
Mol Biol Cell ; 31(20): 2195-2206, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32726175

RESUMEN

Primary cilia are microtubule-based protrusions from the cell surface that are approximately 0.3 µm in diameter and 3 µm in length. Because size approximates the optical diffraction limit, ciliary structures at the subdiffraction level can be observed only by using a superresolution microscope or electron microscope. Expansion microscopy (ExM) is an alternative superresolution imaging technique that uses a swellable hydrogel that enables the physical expansion of specimens. However, the efficacy of ExM has not been fully verified, and further improvements in the method are anticipated. In this study, we applied ExM to the observation of primary cilia and centrioles and compared the acquired images with those obtained using conventional superresolution microscopy. Furthermore, we developed a new tool, called the amplibody, for fluorescence signal amplification, to compensate for the substantial decrease in fluorescence signal per unit volume inherent to physical expansion and for the partial proteolytic digestion of cellular proteins before expansion. We also demonstrate that the combinatorial use of the ExM protocol optimized for amplibodies and Airyscan superresolution microscopy enables the practical observation of cilia and centrioles with high brightness and resolution.


Asunto(s)
Centriolos/metabolismo , Cilios/metabolismo , Microscopía Fluorescente/métodos , Animales , Fluorescencia , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microtúbulos/metabolismo , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...