Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Front Biosci (Landmark Ed) ; 29(2): 84, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38420827

Atopic dermatitis (AD) is a recurrent, chronic, inflammatory, itchy skin disorder that affects up to 20% of the pediatric population and 10% of the adult population worldwide. Onset typically occurs early in life, and although cardinal disease features are similar across all ages, different age groups and ethnicities present distinct clinical characteristics. The disease imposes a significant burden in all health-related quality of life domains, both in children and adults, and a substantial economic cost both at individual and national levels. The pathophysiology of AD includes a complex and multifaceted interplay between the impaired dysfunctional epidermal barrier, genetic predisposition, and environmental contributors, such as chemical and/or biological pollutants and allergens, in the context of dysregulated TH2 and TH17 skewed immune response. Regarding the genetic component, the loss of function mutations encoding structural proteins such as filaggrin, a fundamental epidermal protein, and the more recently identified variations in the epidermal differentiation complex are well-established determinants resulting in an impaired skin barrier in AD. More recently, epigenetic factors have facilitated AD development, including the dysbiotic skin microbiome and the effect of the external exposome, combined with dietary disorders. Notably, the interleukin (IL)-31 network, comprising several cell types, including macrophages, basophils, and the generated cytokines involved in the pathogenesis of itch in AD, has recently been explored. Unraveling the specific AD endotypes, highlighting the implicated molecular pathogenetic mechanisms of clinically relevant AD phenotypes, has emerged as a crucial step toward targeted therapies for personalized treatment in AD patients. This review aims to present state-of-the-art knowledge regarding the multifactorial and interactive pathophysiological mechanisms in AD.


Dermatitis, Atopic , Child , Adult , Humans , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Quality of Life , Skin/metabolism , Cytokines/metabolism , Genetic Predisposition to Disease
2.
J Clin Med ; 12(4)2023 Feb 15.
Article En | MEDLINE | ID: mdl-36836073

BACKGROUND: Tight junctions are transmembrane proteins that regulate the permeability of water, solutes including ions, and water-soluble molecules. The objective of this systematic review is to focus on the current knowledge regarding the role of tight junctions in atopic dermatitis and the possible impact on their therapeutic potential. METHODS: A literature search was performed in PubMed, Google Scholar, and Cochrane library between 2009 and 2022. After evaluation of the literature and taking into consideration their content, 55 articles were finally included. RESULTS: TJs' role in atopic dermatitis extends from a microscopic scale to having macroscopic effects, such as increased susceptibility to pathogens and infections and worsening of atopic dermatitis features. Impaired TJ barrier function and skin permeability in AD lesions is correlated with cldn-1 levels. Th2 inflammation inhibits the expression of cldn-1 and cldn-23. Scratching has also been reported to decrease cldn-1 expression. Dysfunctional TJs' interaction with Langerhans cells could increase allergen penetration. Susceptibility to cutaneous infections in AD patients could also be affected by TJ cohesion. CONCLUSIONS: Dysfunction of TJs and their components, especially claudins, have a significant role in the pathogenesis and vicious circle of inflammation in AD. Discovering more basic science data regarding TJ functionality may be the key for the use of specific/targeted therapies in order to improve epidermal barrier function in AD.

3.
J Pers Med ; 12(2)2022 Jan 25.
Article En | MEDLINE | ID: mdl-35207643

Upregulation of Vimentin (VIM), alpha-Tubulin (TUB) and Detyrosinated tubulin (GLU) in circulating tumor cells (CTCs) derived from breast cancer patients is related to poor prognosis. In the current study we evaluated for the first time, these cytoskeletal proteins in sixty Non-Small Cell Lung Cancer (NSCLC) patients' CTCs (33 treatment-naïve and 27 pre-treated). Samples were isolated using the ISET platform and stained with a pancytokeratin (CK)/CD45/TUB, CK/GLU/VIM and CK/programmed death ligand 1 (PD-L1) combination of antibodies. Subsequently, slides were analyzed using confocal laser scanning microscopy. CTCs were detected in 86.7% of the patients. CTCs with TUB expression were identified in 65.4% (34/52) of the CK (+)-patients. GLU, VIM and PD-L1 were also evaluated. The frequency of the observed phenotypes was as follow: (CK+/GLU-/VIM-): 35.2%, (CK+/GLU+/VIM+): 63.0%, (CK+/GLU+/VIM-): 16.7%, (CK+/GLU-/VIM+): 72.2%, (CK+/PD-L1-): 75% and (CK+/PD-L1+): 55%. The OS was significantly decreased in patients with high GLU (3.8 vs. 7.9 months; p = 0.018) and/or high VIM (3.2 vs. 7.1 months; p = 0.029) expression in their CTCs. PD-L1 was also related to OS (3.4 vs. 7.21 months; p = 0.035). Moreover, TUB-high and TUB-low expression in CTCs inversely influenced patients' OS as independent prognostic factors (p = 0.041 and p = 0.009). The current study revealed that TUB, GLU, VIM and PD-L1 were overexpressed in CTCs from NSCLC patients. Furthermore, the presence of GLU, VIM-positive and PD-L1 in CTCs is potentially related to patients' outcomes.

4.
Ther Adv Med Oncol ; 12: 1758835919895754, 2020.
Article En | MEDLINE | ID: mdl-32426042

BACKGROUND: The chemokine receptor CXCR4 and the transcription factor JUNB, expressed on a variety of tumor cells, seem to play an important role in the metastatic process. Since disseminated tumor cells (DTCs) in the bone marrow (BM) have been associated with worse outcomes, we evaluated the expression of CXCR4 and JUNB in DTCs of primary, nonmetastatic breast cancer (BC) patients before the onset of any systemic treatment. METHODS: Bilateral BM (10 ml) aspirations of 39 hormone receptor (HR)-positive, HER2-negative BC patients were assessed for the presence of DTCs using the following combination of antibodies: pan-cytokeratin (A45-B/B3)/CXCR4/JUNB. An expression pattern of the examined proteins was created using confocal laser scanning microscopy, Image J software and BC cell lines. RESULTS: CXCR4 was overexpressed in cancer cells and DTCs, with the following hierarchy of expression: SKBR3 > MCF7 > DTCs > MDA-MB231. Accordingly, the expression pattern of JUNB was: DTCs > MDA-MB231 > SKBR3 > MCF7. The mean intensity of CXCR4 (6411 ± 334) and JUNB (27725.64 ± 470) in DTCs was statistically higher compared with BM hematopoietic cells (2009 ± 456, p = 0.001; and 11112.89 ± 545, p = 0.001, respectively). The (CXCR4+JUNB+CK+) phenotype was the most frequently detected [90% (35/39)], followed by the (CXCR4-JUNB+CK+) phenotype [36% (14/39)]. However, (CXCR4+JUNB-CK+) tumor cells were found in only 5% (3/39) of patients. Those patients harboring DTCs with the (CXCR4+JUNB+CK+) phenotype revealed lower overall survival (Cox regression: p = 0.023). CONCLUSIONS: (CXCR4+JUNB+CK+)-expressing DTCs, detected frequently in the BM of BC patients, seem to identify a subgroup of patients at higher risk for relapse that may be considered for close follow up.

...