Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276772

RESUMEN

Protein aggregation causes a wide range of neurodegenerative diseases. Targeting and removing aggregates, but not the functional protein, is a considerable therapeutic challenge. Here, we describe a therapeutic strategy called "RING-Bait," which employs an aggregating protein sequence combined with an E3 ubiquitin ligase. RING-Bait is recruited into aggregates, whereupon clustering dimerizes the RING domain and activates its E3 function, resulting in the degradation of the aggregate complex. We exemplify this concept by demonstrating the specific degradation of tau aggregates while sparing soluble tau. Unlike immunotherapy, RING-Bait is effective against both seeded and cell-autonomous aggregation. RING-Bait removed tau aggregates seeded from Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) brain extracts and was also effective in primary neurons. We used a brain-penetrant adeno-associated virus (AAV) to treat P301S tau transgenic mice, reducing tau pathology and improving motor function. A RING-Bait strategy could be applied to other neurodegenerative proteinopathies by replacing the Bait sequence to match the target aggregate.

2.
Brain Commun ; 6(4): fcae256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130515

RESUMEN

Alzheimer's disease is the most common cause of dementia in the elderly, prompting extensive efforts to pinpoint novel therapeutic targets for effective intervention. Among the hallmark features of Alzheimer's disease is the development of neurofibrillary tangles comprised of hyperphosphorylated tau protein, whose progressive spread throughout the brain is associated with neuronal death. Trans-synaptic propagation of tau has been observed in mouse models, and indirect evidence for tau spread via synapses has been observed in human Alzheimer's disease. Halting tau propagation is a promising therapeutic target for Alzheimer's disease; thus, a scalable model system to screen for modifiers of tau spread would be very useful for the field. To this end, we sought to emulate the trans-synaptic spread of human tau in Drosophila melanogaster. Employing the trans-Tango circuit mapping technique, we investigated whether tau spreads between synaptically connected neurons. Immunohistochemistry and confocal imaging were used to look for tau propagation. Examination of hundreds of flies expressing four different human tau constructs in two distinct neuronal populations reveals a robust resistance in Drosophila to the trans-synaptic spread of human tau. This resistance persisted in lines with concurrent expression of amyloid-ß, in lines with global human tau knock-in to provide a template for human tau in downstream neurons, and with manipulations of temperature. These negative data are important for the field as we establish that Drosophila expressing human tau in subsets of neurons are unlikely to be useful to perform screens to find mechanisms to reduce the trans-synaptic spread of tau. The inherent resistance observed in Drosophila may serve as a valuable clue, offering insights into strategies for impeding tau spread in future studies.

4.
Science ; 385(6712): 1009-1016, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39208111

RESUMEN

Selective degradation of pathological protein aggregates while sparing monomeric forms is of major therapeutic interest. The E3 ligase tripartite motif-containing protein 21 (TRIM21) degrades antibody-bound proteins in an assembly state-specific manner due to the requirement of TRIM21 RING domain clustering for activation, yet effective targeting of intracellular assemblies remains challenging. Here, we fused the RING domain of TRIM21 to a target-specific nanobody to create intracellularly expressed constructs capable of selectively degrading assembled proteins. We evaluated this approach against green fluorescent protein-tagged histone 2B (H2B-GFP) and tau, a protein that undergoes pathological aggregation in Alzheimer's and other neurodegenerative diseases. RING-nanobody degraders prevented or reversed tau aggregation in culture and in vivo, with minimal impact on monomeric tau. This approach may have therapeutic potential for the many disorders driven by intracellular protein aggregation.


Asunto(s)
Agregado de Proteínas , Agregación Patológica de Proteínas , Proteolisis , Ribonucleoproteínas , Ubiquitina-Proteína Ligasas , Proteínas tau , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Histonas/metabolismo , Ribonucleoproteínas/metabolismo , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/química , Proteínas tau/metabolismo , Proteínas tau/química , Ubiquitina-Proteína Ligasas/metabolismo
5.
Acta Neuropathol Commun ; 12(1): 99, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886865

RESUMEN

Filaments made of residues 120-254 of transmembrane protein 106B (TMEM106B) form in an age-dependent manner and can be extracted from the brains of neurologically normal individuals and those of subjects with a variety of neurodegenerative diseases. TMEM106B filament formation requires cleavage at residue 120 of the 274 amino acid protein; at present, it is not known if residues 255-274 form the fuzzy coat of TMEM106B filaments. Here we show that a second cleavage appears likely, based on staining with an antibody raised against residues 263-274 of TMEM106B. We also show that besides the brain TMEM106B inclusions form in dorsal root ganglia and spinal cord, where they were mostly found in non-neuronal cells. We confirm that in the brain, inclusions were most abundant in astrocytes. No inclusions were detected in heart, liver, spleen or hilar lymph nodes. Based on their staining with luminescent conjugated oligothiophenes, we confirm that TMEM106B inclusions are amyloids. By in situ immunoelectron microscopy, TMEM106B assemblies were often found in structures resembling endosomes and lysosomes.


Asunto(s)
Proteínas de la Membrana , Proteínas del Tejido Nervioso , Proteínas de la Membrana/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Médula Espinal/metabolismo , Amiloide/metabolismo , Ganglios Espinales/metabolismo , Encéfalo/metabolismo , Masculino , Femenino , Sistema Nervioso Periférico/metabolismo , Anciano , Animales
6.
Angew Chem Int Ed Engl ; 63(21): e202317756, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38523073

RESUMEN

Hyperphosphorylation and aggregation of the protein tau play key roles in the development of Alzheimer's disease (AD). While the molecular structure of the filamentous tau aggregates has been determined to atomic resolution, there is far less information available about the smaller, soluble aggregates, which are believed to be more toxic. Traditional techniques are limited to bulk measures and struggle to identify individual aggregates in complex biological samples. To address this, we developed a novel single-molecule pull-down-based assay (MAPTau) to detect and characterize individual tau aggregates in AD and control post-mortem brain and biofluids. Using MAPTau, we report the quantity, as well as the size and circularity of tau aggregates measured using super-resolution microscopy, revealing AD-specific differences in tau aggregate morphology. By adapting MAPTau to detect multiple phosphorylation markers in individual aggregates using two-color coincidence detection, we derived compositional profiles of the individual aggregates. We find an AD-specific phosphorylation profile of tau aggregates with more than 80 % containing multiple phosphorylations, compared to 5 % in age-matched non-AD controls. Our results show that MAPTau is able to identify disease-specific subpopulations of tau aggregates phosphorylated at different sites, that are invisible to other methods and enable the study of disease mechanisms and diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Agregado de Proteínas , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/análisis , Fosforilación , Imagen Individual de Molécula/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología
7.
Alzheimers Dement ; 20(3): 1894-1912, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38148705

RESUMEN

INTRODUCTION: The "prion-like" features of Alzheimer's disease (AD) tauopathy and its relationship with amyloid-ß (Aß) have never been experimentally studied in primates phylogenetically close to humans. METHODS: We injected 17 macaques in the entorhinal cortex with nanograms of seeding-competent tau aggregates purified from AD brains or control extracts from aged-matched healthy brains, with or without intracerebroventricular co-injections of oligomeric-Aß. RESULTS: Pathological tau injection increased cerebrospinal fluid (CSF) p-tau181 concentration after 18 months. Tau pathology spreads from the entorhinal cortex to the hippocampal trisynaptic loop and the cingulate cortex, resuming the experimental progression of Braak stage I to IV. Many AD-related molecular networks were impacted by tau seeds injections regardless of Aß injections in proteomic analyses. However, we found mature neurofibrillary tangles, increased CSF total-tau concentration, and pre- and postsynaptic degeneration only in Aß co-injected macaques. DISCUSSION: Oligomeric-Aß mediates the maturation of tau pathology and its neuronal toxicity in macaques but not its initial spreading. HIGHLIGHTS: This study supports the "prion-like" properties of misfolded tau extracted from AD brains. This study empirically validates the Braak staging in an anthropomorphic brain. This study highlights the role of oligomeric Aß in driving the maturation and toxicity of tau pathology. This work establishes a novel animal model of early sporadic AD that is closer to the human pathology.


Asunto(s)
Enfermedad de Alzheimer , Priones , Animales , Humanos , Anciano , Enfermedad de Alzheimer/patología , Macaca/metabolismo , Proteómica , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología
8.
Cell Rep ; 42(7): 112725, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37393617

RESUMEN

Tau is a soluble protein interacting with tubulin to stabilize microtubules. However, under pathological conditions, it becomes hyperphosphorylated and aggregates, a process that can be induced by treating cells with exogenously added tau fibrils. Here, we employ single-molecule localization microscopy to resolve the aggregate species formed in early stages of seeded tau aggregation. We report that entry of sufficient tau assemblies into the cytosol induces the self-replication of small tau aggregates, with a doubling time of 5 h inside HEK cells and 1 day in murine primary neurons, which then grow into fibrils. Seeding occurs in the vicinity of the microtubule cytoskeleton, is accelerated by the proteasome, and results in release of small assemblies into the media. In the absence of seeding, cells still spontaneously form small aggregates at lower levels. Overall, our work provides a quantitative picture of the early stages of templated seeded tau aggregation in cells.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Ratones , Animales , Proteínas tau/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Citosol/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Agregado de Proteínas
9.
Science ; 379(6639): 1336-1341, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36996217

RESUMEN

Aggregates of the protein tau are proposed to drive pathogenesis in neurodegenerative diseases. Tau can be targeted by using passively transferred antibodies (Abs), but the mechanisms of Ab protection are incompletely understood. In this work, we used a variety of cell and animal model systems and showed that the cytosolic Ab receptor and E3 ligase TRIM21 (T21) could play a role in Ab protection against tau pathology. Tau-Ab complexes were internalized to the cytosol of neurons, which enabled T21 engagement and protection against seeded aggregation. Ab-mediated protection against tau pathology was lost in mice that lacked T21. Thus, the cytosolic compartment provides a site of immunotherapeutic protection, which may help in the design of Ab-based therapies in neurodegenerative disease.


Asunto(s)
Anticuerpos Monoclonales , Inmunización Pasiva , Ribonucleoproteínas , Tauopatías , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Proteínas tau , Animales , Ratones , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Citosol/metabolismo , Modelos Animales de Enfermedad , Receptores Fc , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas tau/inmunología , Tauopatías/terapia , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Brain ; 146(6): 2524-2534, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382344

RESUMEN

Progressive supranuclear palsy is a primary tauopathy affecting both neurons and glia and is responsible for both motor and cognitive symptoms. Recently, it has been suggested that progressive supranuclear palsy tauopathy may spread in the brain from cell to cell in a 'prion-like' manner. However, direct experimental evidence of this phenomenon, and its consequences on brain functions, is still lacking in primates. In this study, we first derived sarkosyl-insoluble tau fractions from post-mortem brains of patients with progressive supranuclear palsy. We also isolated the same fraction from age-matched control brains. Compared to control extracts, the in vitro characterization of progressive supranuclear palsy-tau fractions demonstrated a high seeding activity in P301S-tau expressing cells, displaying after incubation abnormally phosphorylated (AT8- and AT100-positivity), misfolded, filamentous (pentameric formyl thiophene acetic acid positive) and sarkosyl-insoluble tau. We bilaterally injected two male rhesus macaques in the supranigral area with this fraction of progressive supranuclear palsy-tau proteopathic seeds, and two other macaques with the control fraction. The quantitative analysis of kinematic features revealed that progressive supranuclear palsy-tau injected macaques exhibited symptoms suggestive of parkinsonism as early as 6 months after injection, remaining present until euthanasia at 18 months. An object retrieval task showed the progressive appearance of a significant dysexecutive syndrome in progressive supranuclear palsy-tau injected macaques compared to controls. We found AT8-positive staining and 4R-tau inclusions only in progressive supranuclear palsy-tau injected macaques. Characteristic pathological hallmarks of progressive supranuclear palsy, including globose and neurofibrillary tangles, tufted astrocytes and coiled bodies, were found close to the injection sites but also in connected brain regions that are known to be affected in progressive supranuclear palsy (striatum, pallidum, thalamus). Interestingly, while glial AT8-positive lesions were the most frequent near the injection site, we found mainly neuronal inclusions in the remote brain area, consistent with a neuronal transsynaptic spreading of the disease. Our results demonstrate that progressive supranuclear palsy patient-derived tau aggregates can induce motor and behavioural impairments in non-human primates related to the prion-like seeding and spreading of typical pathological progressive supranuclear palsy lesions. This pilot study paves the way for supporting progressive supranuclear palsy-tau injected macaque as a relevant animal model to accelerate drug development targeting this rare and fatal neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Parálisis Supranuclear Progresiva , Tauopatías , Animales , Masculino , Parálisis Supranuclear Progresiva/patología , Proteínas tau/metabolismo , Enfermedades Neurodegenerativas/patología , Macaca mulatta/metabolismo , Proyectos Piloto , Tauopatías/patología , Encéfalo/patología
11.
Cell Rep ; 39(5): 110776, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35508140

RESUMEN

Assemblies of tau can transit between neurons, seeding aggregation in a prion-like manner. To accomplish this, tau must cross cell-limiting membranes, a process that is poorly understood. Here, we establish assays for the study of tau entry into the cytosol as a phenomenon distinct from uptake, in real time, and at physiological concentrations. The entry pathway of tau is cell type specific and, in neurons, highly sensitive to cholesterol. Depletion of the cholesterol transporter Niemann-Pick type C1 or extraction of membrane cholesterol renders neurons highly permissive to tau entry and potentiates seeding even at low levels of exogenous tau assemblies. Conversely, cholesterol supplementation reduces entry and almost completely blocks seeded aggregation. Our findings establish entry as a rate-limiting step to seeded aggregation and demonstrate that dysregulated cholesterol, a feature of several neurodegenerative diseases, potentiates tau aggregation by promoting entry of tau assemblies into the cell interior.


Asunto(s)
Enfermedad de Alzheimer , Priones , Enfermedad de Alzheimer/metabolismo , Colesterol/metabolismo , Citosol/metabolismo , Humanos , Neuronas/metabolismo , Priones/metabolismo , Proteínas tau/metabolismo
12.
Sci Adv ; 7(43): eabg4980, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34669475

RESUMEN

The microtubule-associated protein tau aggregates in multiple neurodegenerative diseases, causing inflammation and changing the inflammatory signature of microglia by unknown mechanisms. We have shown that microglia phagocytose live neurons containing tau aggregates cultured from P301S tau mice due to neuronal tau aggregate-induced exposure of the "eat me" signal phosphatidylserine. Here, we show that after phagocytosing tau aggregate-bearing neurons, microglia become hypophagocytic while releasing seed-competent insoluble tau aggregates. These microglia express a senescence-like phenotype, demonstrated by acidic ß-galactosidase activity, secretion of paracrine senescence-associated cytokines, and maturation of matrix remodeling enzymes, results that are corroborated in P301S mouse brains and ex vivo brain slices. In particular, the nuclear factor κB­dependent activation of matrix metalloprotease 3 (MMP3/stromelysin1) was replicated in brains from patients with tauopathy. These data show that microglia that have been activated to ingest live tau aggregates-bearing neurons behave hormetically, becoming hypofunctional while acting as vectors of tau aggregate spreading.

13.
Sci Rep ; 11(1): 12946, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155306

RESUMEN

The deposition of tau aggregates throughout the brain is a pathological characteristic within a group of neurodegenerative diseases collectively termed tauopathies, which includes Alzheimer's disease. While recent findings suggest the involvement of unconventional secretory pathways driving tau into the extracellular space and mediating the propagation of the disease-associated pathology, many of the mechanistic details governing this process remain elusive. In the current study, we provide an in-depth characterization of the unconventional secretory pathway of tau and identify novel molecular determinants that are required for this process. Here, using Drosophila models of tauopathy, we correlate the hyperphosphorylation and aggregation state of tau with the disease-related neurotoxicity. These newly established systems recapitulate all the previously identified hallmarks of tau secretion, including the contribution of tau hyperphosphorylation as well as the requirement for PI(4,5)P2 triggering the direct translocation of tau. Using a series of cellular assays, we demonstrate that both the sulfated proteoglycans on the cell surface and the correct orientation of the protein at the inner plasma membrane leaflet are critical determinants of this process. Finally, we identify two cysteine residues within the microtubule binding repeat domain as novel cis-elements that are important for both unconventional secretion and trans-cellular propagation of tau.


Asunto(s)
Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas tau/biosíntesis , Proteínas tau/genética , Animales , Células CHO , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Cromatografía Liquida , Cricetulus , Cisteína/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Fosforilación , Transporte de Proteínas , Proteínas Recombinantes , Retina/metabolismo , Espectrometría de Masas en Tándem
14.
Acta Neuropathol Commun ; 9(1): 41, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712082

RESUMEN

A fundamental property of infectious agents is their particulate nature: infectivity arises from independently-acting particles rather than as a result of collective action. Assemblies of the protein tau can exhibit seeding behaviour, potentially underlying the apparent spread of tau aggregation in many neurodegenerative diseases. Here we ask whether tau assemblies share with classical pathogens the characteristic of particulate behaviour. We used organotypic hippocampal slice cultures from P301S tau transgenic mice in order to precisely control the concentration of extracellular tau assemblies in neural tissue. Whilst untreated slices displayed no overt signs of pathology, exposure to recombinant tau assemblies could result in the formation of intraneuronal, hyperphosphorylated tau structures. However, seeding ability of tau assemblies did not titrate in a one-hit manner in neural tissue. The results suggest that seeding behaviour of tau arises at high concentrations, with implications for the interpretation of high-dose intracranial challenge experiments and the possible contribution of seeded aggregation to human disease.


Asunto(s)
Priones/patogenicidad , Agregación Patológica de Proteínas/patología , Agregación Patológica de Proteínas/fisiopatología , Tauopatías/patología , Tauopatías/fisiopatología , Proteínas tau/metabolismo , Enfermedad de Alzheimer , Animales , Modelos Animales de Enfermedad , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Técnicas In Vitro , Ratones , Ratones Transgénicos , Fosforilación , Agregación Patológica de Proteínas/metabolismo , Tauopatías/metabolismo , Técnicas de Cultivo de Tejidos , Proteínas tau/genética
15.
J Biol Chem ; 295(28): 9676-9690, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32467226

RESUMEN

The accumulation of amyloid Tau aggregates is implicated in Alzheimer's disease (AD) and other tauopathies. Molecular chaperones are known to maintain protein homeostasis. Here, we show that an ATP-dependent human chaperone system disassembles Tau fibrils in vitro We found that this function is mediated by the core chaperone HSC70, assisted by specific cochaperones, in particular class B J-domain proteins and a heat shock protein 110 (Hsp110)-type nucleotide exchange factor (NEF). The Hsp70 disaggregation machinery processed recombinant fibrils assembled from all six Tau isoforms as well as Sarkosyl-resistant Tau aggregates extracted from cell cultures and human AD brain tissues, demonstrating the ability of the Hsp70 machinery to recognize a broad range of Tau aggregates. However, the chaperone activity released monomeric and small oligomeric Tau species, which induced the aggregation of self-propagating Tau conformers in a Tau cell culture model. We conclude that the activity of the Hsp70 disaggregation machinery is a double-edged sword, as it eliminates Tau amyloids at the cost of generating new seeds.


Asunto(s)
Enfermedad de Alzheimer , Amiloide , Encéfalo , Proteínas HSP70 de Choque Térmico , Proteínas tau , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Células HEK293 , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Ann Gastroenterol ; 32(6): 614-619, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31700239

RESUMEN

BACKGROUND: Observational studies have shown an increased risk of upper gastrointestinal bleeding in users of selective serotonin receptor inhibitors (SSRIs). We retrospectively investigated the impact of SSRIs, alone or combined with aspirin (ASA) or nonsteroidal anti-inflammatory drugs (NSAIDs), on the incidence of post-endoscopic sphincterotomy (post-ES) bleeding. METHODS: A total of 3058 patients were included. Of these, 457 patients received SSRIs, alone or plus ASA or NSAIDs, until the day of ES (SSRIs group), while 2659 patients (non SSRIs group) had never been on SSRIs (n=1925), though some had been on ASA (n=613) or NSAIDS (n=121). Patient assessment included indication for endoscopic retrograde cholangiopancreatography (ERCP), comorbid diseases, detailed drug history before and after ES, procedural details, and risk factors for post-ES bleeding. Primary outcome was defined as the incidence, type and severity of post-ES bleeding. RESULTS: There was no statistical difference in age, sex, indication for ERCP, comorbid diseases, technical characteristics or results of therapeutic ERCP between the 2 groups. The incidence of post-ES bleeding was 3.9% in the SSRIs group and 3% in the non SSRIs group, a difference not statistically significant (P=0.754). Likewise, there was no difference in type (P=0.145) or severity of bleeding (P=0.754) between the 2 groups. Multivariate analysis showed the precut technique as the only independent risk factor for post ES hemorrhage (odds ratio 2.56, 95% confidence interval 1.23-3.63; P=0.001). CONCLUSION: This study found that SSRIs, alone or combined with ASA or NSAIDs, had no influence on the incidence or the severity of post-ES bleeding.

17.
Curr Mol Med ; 20(1): 3-12, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31530263

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease and the main form of dementia, characterized by progressive cognitive decline and detrimental consequences in both personal-family and global level. Within this narrative review, we provide recent molecular aspects of Tau, a microtubule AD-associated protein, as well as amyloid beta, involved in AD pathophysiology. Moreover, we provide additional emerging data from basic research as well as clinical studies indicating an implicating role of gastrointestinal microbiota (GI-M), including Helicobacter pylori infection (Hp-I), in AD pathophysiology. Likewise, we identified through a molecular prism the current evidence of AD pathogenesis as well as its linkage with GI-M and emphasizing the role of Hp-I. All in all, additional large-scale studies are required for the further clarification of AD pathophysiology and its connection with GI-M and Hp-I, so as novel therapies on molecular basis become available.


Asunto(s)
Enfermedad de Alzheimer/genética , Infecciones por Helicobacter/genética , Enfermedades Neurodegenerativas/genética , Proteínas tau/genética , Enfermedad de Alzheimer/microbiología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/microbiología , Disfunción Cognitiva/patología , Microbioma Gastrointestinal/genética , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori/patogenicidad , Humanos , Enfermedades Neurodegenerativas/microbiología
18.
Front Immunol ; 10: 1139, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214163

RESUMEN

Ordered assemblies of proteins are found in the postmortem brains of sufferers of several neurodegenerative diseases. The cytoplasmic microtubule associated protein tau and alpha-synuclein (αS) are found in an assembled state in Alzheimer's disease and Parkinson's disease, respectively. An accumulating body of evidence suggests a "prion-like" mechanism of spread of these assemblies through the diseased brain. Under this hypothesis, assembled variants of these proteins promote the conversion of native proteins to the assembled state. This likely inflicts pathology on cells of the brain through a toxic gain-of-function mechanism. Experiments in animal models of tau and αS pathology have demonstrated that the passive transfer of anti-tau or anti-αS antibodies induces a reduction in the levels of assembled proteins. This is further accompanied by improvements in neurological function and preservation of brain volume. Immunotherapy is therefore considered one of the brightest hopes as a therapeutic avenue in an area currently without disease-modifying therapy. Following a series of disappointing clinical trials targeting beta-amyloid, a peptide that accumulates in the extracellular spaces of the AD brain, attention is turning to active and passive immunotherapies that target tau and αS. However, there are several remaining uncertainties concerning the mechanism by which antibodies afford protection against self-propagating protein conformations. This review will discuss current understanding of how antibodies and their receptors can be brought to bear on proteins involved in neurodegeneration. Parallels will be made to antibody-mediated protection against classical viral infections. Common mechanisms that may contribute to protection against self-propagating protein conformations include blocking the entry of protein "seeds" to cells, clearance of immune complexes by microglia, and the intracellular protein degradation pathway initiated by cytoplasmic antibodies via the Fc receptor TRIM21. As with anti-viral immunity, protective mechanisms may be accompanied by the activation of immune signaling pathways and we will discuss the suitability of such activation in the neurological setting.


Asunto(s)
Autoanticuerpos/metabolismo , Encéfalo/metabolismo , Inmunoterapia/métodos , Enfermedades Neurodegenerativas/inmunología , Vacunas/inmunología , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Enfermedades Neurodegenerativas/terapia
20.
J Cell Biol ; 218(2): 683-699, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30470711

RESUMEN

FGF2 is exported from cells by an unconventional secretory mechanism. Here, we directly visualized individual FGF2 membrane translocation events at the plasma membrane using live cell TIRF microscopy. This process was dependent on both PI(4,5)P2-mediated recruitment of FGF2 at the inner leaflet and heparan sulfates capturing FGF2 at the outer plasma membrane leaflet. By simultaneous imaging of both FGF2 membrane recruitment and the appearance of FGF2 at the cell surface, we revealed the kinetics of FGF2 membrane translocation in living cells with an average duration of ∼200 ms. Furthermore, we directly demonstrated FGF2 oligomers at the inner leaflet of living cells with a FGF2 dimer being the most prominent species. We propose this dimer to represent a key intermediate in the formation of higher FGF2 oligomers that form membrane pores and put forward a kinetic model explaining the mechanism by which membrane-inserted FGF2 oligomers serve as dynamic translocation intermediates during unconventional secretion of FGF2.


Asunto(s)
Membrana Celular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Animales , Células CHO , Cricetulus , Factor 2 de Crecimiento de Fibroblastos/genética , Células HEK293 , Heparitina Sulfato/metabolismo , Humanos , Cinética , Microscopía Fluorescente , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Vías Secretoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA