Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Med Phys ; 2024 May 19.
Article En | MEDLINE | ID: mdl-38762908

BACKGROUND: The recent emergence of targeted radionuclide therapy has increased the demand for imagers capable of visualizing pharmacokinetics in developing radiopharmaceuticals in the preclinical phase. Some radionuclides emit hard x-rays and gamma-rays below 100 keV, in which energy range the performance of conventional NaI scintillators is poor. Multipinhole collimators are also used for small animal imaging with a good spatial resolution but have a limited field of view (FOV). PURPOSE: In this study, a new imager with high sensitivity over a wide FOV in the low-energy band ( < $<$ 100 keV) was developed for the pharmacokinetic study. METHODS: We developed an x-ray and gamma-ray camera for high-resolution spectroscopy, named "CdTe XG-Cam," equipped with a cadmium telluride semiconductor detector and a parallel-hole collimator using a metal 3D printer. To evaluate the camera-system performance, phantom measurements with single and dual nuclides ( 99 m Tc $^{\rm 99m}{\rm Tc}$ , 111 In $^{111}{\rm In}$ , and 125 I ) $^{125}{\rm I)}$ were performed. The performance for in vivo imaging was evaluated using tumor-bearing mice to which a nuclide ( 99 m Tc $^{\rm 99m}{\rm Tc}$ or 125 I ) $^{125}{\rm I)}$  administered. RESULTS: We simultaneously obtained information on 111 In $^{111}{\rm In}$ and 125 I $^{125}{\rm I}$ , which emit emission lines in the low-energy band with peak energies close to each other (23-26 keV for 111 In $^{111}{\rm In}$ and 27-31 keV for 125 I ) $^{125}{\rm I)}$ , and applied an analytical method based on spectral model fitting to determine the individual radioactivities accurately. In the small animal imaging, the distributions of the nuclide in tumors were accurately quantified and time-activity curves in tumors are obtained. CONCLUSIONS: The demonstrated capability of our system to perform in vivo imaging suggests that the camera can be used for applications of pharmacokinetics research.

2.
Sci Rep ; 13(1): 19464, 2023 11 09.
Article En | MEDLINE | ID: mdl-37945679

Multi-radionuclide in vivo imaging with submillimetre resolution can be a potent tool for biomedical research. While high-resolution radionuclide imaging faces challenges in sensitivity, multi-radionuclide imaging encounters difficulty due to radiation contamination, stemming from crosstalk between radionuclides and Compton scattering. Addressing these challenges simultaneously is imperative for multi-radionuclide high-resolution imaging. To tackle this, we developed a high-spatial-resolution and high-energy-resolution small animal single-photon emission computed tomography (SPECT) scanner, named CdTe-DSD SPECT-I. We first assessed the feasibility of multi-tracer SPECT imaging of submillimetre targets. Using the CdTe-DSD SPECT-I, we performed SPECT imaging of submillimetre zeolite spheres absorbed with 125I- and subsequently imaged 125I-accumulated spheroids of 200-400 µm in size within an hour, achieving clear and quantitative images. Furthermore, dual-radionuclide phantom imaging revealed a distinct image of the submillimetre sphere absorbed with 125I- immersed in a 99mTc-pertechnetate solution, and provided a fair quantification of each radionuclide. Lastly, in vivo imaging was conducted on a cancer-bearing mouse with lymph node micro-metastasis using dual-tracers. The results displayed dual-tracer images of lymph tract by 99mTc-phytic acid and the submillimetre metastatic lesion by 125I-, shown to align with the immunofluorescence image.


Cadmium Compounds , Quantum Dots , Mice , Animals , Tellurium , Tomography, Emission-Computed, Single-Photon/methods , Iodine Radioisotopes , Phantoms, Imaging , Lymphatic Metastasis/diagnostic imaging
3.
Bioengineering (Basel) ; 11(1)2023 Dec 26.
Article En | MEDLINE | ID: mdl-38247903

In targeted radionuclide therapy, determining the absorbed dose of the ligand distributed to the whole body is vital due to its direct influence on therapeutic and adverse effects. However, many targeted alpha therapy drugs present challenges for in vivo quantitative imaging. To address this issue, we developed a planar imaging system equipped with a cadmium telluride semiconductor detector that offers high energy resolution. This system also comprised a 3D-printed tungsten collimator optimized for high sensitivity to astatine-211, an alpha-emitting radionuclide, and adequate spatial resolution for mouse imaging. The imager revealed a spectrum with a distinct peak for X-rays from astatine-211 owing to the high energy resolution, clearly distinguishing these X-rays from the fluorescent X-rays of tungsten. High collimator efficiency (4.5 × 10-4) was achieved, with the maintenance of the spatial resolution required for discerning mouse tissues. Using this system, the activity of astatine-211 in thyroid cancer tumors with and without the expression of the sodium iodide symporter (K1-NIS/K1, respectively) was evaluated through in vivo imaging. The K1-NIS tumors had significantly higher astatine-211 activity (sign test, p = 0.031, n = 6) and significantly decreased post-treatment tumor volume (Student's t-test, p = 0.005, n = 6). The concurrent examination of intratumor drug distribution and treatment outcome could be performed with the same mice.

4.
Nat Biomed Eng ; 6(5): 640-647, 2022 05.
Article En | MEDLINE | ID: mdl-35379956

The insufficient energy and spatial resolutions of radionuclide imaging with conventional scintillation detectors restrict the visualization of multiple radionuclides and of microstructures in tissue. Here we report the development and performance of an imaging system equipped with a cadmium telluride diode detector that achieves an energy resolution of 1.7% at 140 keV and a spatial resolution of 250 µm. The combination of high-resolution spectra fitted to an X-ray analysis model of the emission lines of the radionuclides in a chosen energy band allowed us to accurately determine individual radiation activities from three radionuclides to simultaneously visualize thyroid tissue (via intravenously administered iodine-125), mandibular lymph nodes (via the intramuscular injection of indium-111) and parotid lymph nodes (via a subcutaneous injection of technetium-99m) in mice. Multi-radionuclide imaging may find advantageous applications in biomedical imaging.


Technetium , Animals , Mice
5.
Sci Rep ; 12(1): 5261, 2022 Mar 28.
Article En | MEDLINE | ID: mdl-35347165

Elemental analysis based on muonic X-rays resulting from muon irradiation provides information about bulk material composition without causing damage, which is essential in the case of precious or otherwise unreachable samples, such as in archeology and planetary science. We developed a three-dimensional (3D) elemental analysis technique by combining the elemental analysis method based on negative muons with an imaging cadmium telluride double-sided strip detector (CdTe-DSD) designed for the hard X-ray and soft [Formula: see text]-ray observation. A muon irradiation experiment using spherical plastic samples was conducted at the Japan Proton Accelerator Research Complex (J-PARC); a set of projection images was taken by the CdTe-DSD, equipped with a pinhole collimator, for different sample rotation angles. The projection images measured by the CdTe-DSD were utilized to obtain a 3D volumetric phantom by using the maximum likelihood expectation maximization algorithm. The reconstructed phantom successfully revealed the 3D distribution of carbon in the bulk samples and the stopping depth of the muons. This result demonstrated the feasibility of the proposed non-destructive 3D elemental analysis method for bulk material analysis based on muonic X-rays.

...