Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Chem Biodivers ; 21(2): e202300960, 2024 Feb.
Article En | MEDLINE | ID: mdl-38217335

Diabetes is a prevalent metabolic disorder associated with various complications. Inhibition of α-glucosidase and α-amylase enzymes is an effective strategy for managing non-insulin-dependent diabetes mellitus. This study aimed to investigate the antioxidant and antidiabetic potential of Ormocarpum cochinchinense leaf through in vitro and in silico approaches. The methanol extract exhibited the highest phenolic and flavonoid content over solvent extracts aqueous, acetone, hexane, and chloroform, the same has been correlating with strong antioxidant activity. Furthermore, the methanol extract demonstrated significant inhibitory effects on α-amylase and α-glucosidase enzymes, indicating its potential as an antidiabetic agent. Molecular docking analysis identified compounds, including myo-inositol, with favorable binding energies comparable to the standard drug metformin. The selected compounds displayed strong binding affinity towards α-amylase and α-glucosidase enzymes. Structural dynamics analysis revealed that myo-inositol formed a more stable complex with the enzymes. These findings suggest that O. cochinchinense leaf possesses antioxidant and antidiabetic properties, making it a potential source for developing therapeutic agents.


Antioxidants , Hypoglycemic Agents , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , alpha-Glucosidases/metabolism , Methanol , Molecular Docking Simulation , Plant Extracts/chemistry , alpha-Amylases/metabolism , Plant Leaves/metabolism , Inositol/pharmacology
2.
Inflammopharmacology ; 31(5): 2599-2614, 2023 Oct.
Article En | MEDLINE | ID: mdl-37405586

Methotrexate (MTX) is an antifolate that is inescapable and widely used to treat autoimmune diseases and is the gold standard medicine for the arthritic condition. Despite its importance, it is more prone to gastrointestinal toxicity, which is most common in arthritis patients during MTX treatment. Combination therapies are required to ensure MTX's antiarthritic activity while providing gastrointestinal protection. Zinc (Zn) and L-carnitine (Lc) are well-known potent antioxidants and anti-inflammatory supplements with promising results in pre-clinical studies. Arthritis was induced in Wistar rat's ankles with Freund's adjuvant and treated with either MTX (2.5 mg/kg b.w per week for two weeks) or Zn (18 mg/kg b.w. per day) Lc (200 mg/kg b.w. per day) individually or in combination (MTX + Zn Lc). The antiarthritic effects were evaluated by body weight, paw volume, ankle tissue, and joint histopathology. At the same time, anti-toxicity/gastrointestinal protective activity was examined by tissue oxidative stress markers, antioxidants, mitochondrial function, inflammatory mediators, and antioxidant signaling proteins and their binding mechanism. Repercussions of MTX intoxication induced upregulation of oxidative stress markers, antioxidant depletion, ATP depletion, decreased expression of Nrf2/Sirt1/Foxo3, and the overexpression of inflammatory mediators attenuated by co-treatment with Zn Lc. Zn Lc markedly mitigated MTX-instigated intestinal injury by activating antioxidant signaling mechanisms Nrf2/Sirt1/Foxo3 signaling and tissue architectural anomalies and exhibited an enhanced antiarthritic effect. In conclusion, we report that Zn Lc and MTX combination could presumably protect the intestine from low-dose MTX which managed arthritis but induced severe intestinal damage with increased inflammation and downregulated Nrf2/Sirt1/Foxo3 pathway.


Arthritis, Experimental , Methotrexate , Rats , Animals , Humans , Methotrexate/pharmacology , Methotrexate/therapeutic use , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Molecular Docking Simulation , Zinc/pharmacology , Zinc/therapeutic use , Carnitine/pharmacology , Carnitine/therapeutic use , Sirtuin 1/metabolism , Rats, Wistar , Oxidative Stress , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Intestines/pathology , Inflammation Mediators/metabolism
3.
Med Oncol ; 40(8): 212, 2023 Jun 26.
Article En | MEDLINE | ID: mdl-37358816

Cancer and related diseases are the second leading cause of death worldwide. The human papillomavirus (HPV) is an infectious agent that can be spread mainly through sexual contact and has been linked to several malignancies in both sexes. HPV is linked to almost all cases of cervical cancer. It is also linked to many head and neck cancer (HNC) cases, especially oropharyngeal cancer. Also, some HPV-related cancers, like vaginal, vulvar, penile, and anal cancers, are related to the anogenital area. Over the past few decades, testing for and preventing cervical cancer has improved, but anogenital cancers are still harder to confirm. HPV16 and HPV18 have been extensively researched due to their significant carcinogenic potential. The products of two early viral genes, E6 and E7, have been identified as playing crucial roles in cellular transformation, as emphasized by biological investigations. The complete characterization of numerous mechanisms employed by E6 and E7 in undermining the regulation of essential cellular processes has significantly contributed to our comprehension of HPV-induced cancer progression. This review focuses on the various types of cancers caused by HPV infection and also sheds light on the signaling cascades involved in the same.


Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Male , Female , Humans , Uterine Cervical Neoplasms/epidemiology , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Cell Transformation, Neoplastic , Papillomavirus E7 Proteins/genetics
4.
J Trace Elem Med Biol ; 78: 127188, 2023 Jul.
Article En | MEDLINE | ID: mdl-37163819

BACKGROUND: Methotrexate (MTX), a folic acid analogue, is used as a first-line treatment for rheumatoid arthritis (RA) since it has more therapeutic mechanisms than any other drug. Being an undeniable drug for the treatment of arthritis, even low-dose MTX provokes intestinal toxicity as a primary adverse effect and does not revive an anti-inflammatory element. Thus, our study aims to elucidate the anti-arthritic and prophylactic activity of supplements L-carnitine (L) and zinc (Z) against MTX-mediated intestinal damage in arthritis rats. METHODS: The rats were assessed for arthritic parameters such as body weight, paw volume, x-ray scan, and serum trace elements level. To analyze the toxic effects of MTX in the rats, intestine pH, mucosal weight, digestive enzymes, myeloperoxidase, histopathological, and immunohistochemical analysis were performed. RESULTS: Our study demonstrated that the arthritic parameters have shown that MTX has an ameliorative effect on arthritic rats. Besides, our findings showed that low-dose MTX (2.5 mg/kg b.w.) given once a week for two weeks during arthritis treatment had toxic effects in the rat's intestine, as evidenced by changes in intestine pH and mucosal weight, decreased digestive enzymes, increased MPO, and degenerative changes in histopathological analysis. Concurrent therapy of LZ with MTX, on the other hand, restored the modifications in these parameters. CONCLUSION: MTX in combination with LZ effectively manages arthritis than monotherapy and significantly prevents MTX-induced intestinal damage in arthritis rats. Thus, LZ could be used as an improved therapeutic and safety for MTX-instigated intestinal damage during arthritis treatments. Therefore, our combination of L-carnitine and zinc with MTX would be promising prophylactic activity for arthritis patients.


Arthritis, Experimental , Trace Elements , Rats , Animals , Methotrexate/pharmacology , Methotrexate/therapeutic use , Trace Elements/pharmacology , Enterocytes , Carnitine/pharmacology , Carnitine/therapeutic use , Zinc/therapeutic use , Zinc/pharmacology , Dietary Supplements , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Cell Proliferation
5.
Cells ; 11(24)2022 12 07.
Article En | MEDLINE | ID: mdl-36552725

Liver diseases are responsible for global mortality and morbidity and are a significant cause of death worldwide. Consequently, the advancement of new liver disease targets is of great interest. Non-coding RNA (ncRNA), such as microRNA (miRNA) and long ncRNA (lncRNA), has been proven to play a significant role in the pathogenesis of virtually all acute and chronic liver disorders. Recent studies demonstrated the medical applications of miRNA in various phases of hepatic pathology. PPARs play a major role in regulating many signaling pathways involved in various metabolic disorders. Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world, encompassing a spectrum spanning from mild steatosis to severe non-alcoholic steatohepatitis (NASH). PPARs were found to be one of the major regulators in the progression of NAFLD. There is no recognized treatment for NAFLD, even though numerous clinical trials are now underway. NAFLD is a major risk factor for developing hepatocellular carcinoma (HCC), and its frequency increases as obesity and diabetes become more prevalent. Reprogramming anti-diabetic and anti-obesity drugs is an effective therapy option for NAFLD and NASH. Several studies have also focused on the role of ncRNAs in the pathophysiology of NAFLD. The regulatory effects of these ncRNAs make them a primary target for treatments and as early biomarkers. In this study, the main focus will be to understand the regulation of PPARs through ncRNAs and their role in NAFLD.


Non-alcoholic Fatty Liver Disease , Peroxisome Proliferator-Activated Receptors , RNA, Untranslated , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/therapeutic use , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Peroxisome Proliferator-Activated Receptors/genetics , Peroxisome Proliferator-Activated Receptors/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA, Untranslated/therapeutic use
6.
Vaccines (Basel) ; 10(11)2022 Nov 10.
Article En | MEDLINE | ID: mdl-36366411

Cancer, which killed ten million people in 2020, is expected to become the world's leading health problem and financial burden. Despite the development of effective therapeutic approaches, cancer-related deaths have increased by 25.4% in the last ten years. Current therapies promote apoptosis and oxidative stress DNA damage and inhibit inflammatory mediators and angiogenesis from providing temporary relief. Thioredoxin-binding protein (TXNIP) causes oxidative stress by inhibiting the function of the thioredoxin system. It is an important regulator of many redox-related signal transduction pathways in cells. In cancer cells, it functions as a tumor suppressor protein that inhibits cell proliferation. In addition, TXNIP levels in hemocytes increased after immune stimulation, suggesting that TXNIP plays an important role in immunity. Several studies have provided experimental evidence for the immune modulatory role of TXNIP in cancer impediments. TXNIP also has the potential to act against immune cells in cancer by mediating the JAK-STAT, MAPK, and PI3K/Akt pathways. To date, therapies targeting TXNIP in cancer are still under investigation. This review highlights the role of TXNIP in preventing cancer, as well as recent reports describing its functions in various immune cells, signaling pathways, and promoting action against cancer.

7.
Toxicology ; 461: 152909, 2021 09.
Article En | MEDLINE | ID: mdl-34453959

Rheumatoid arthritis (RA) is an autoimmune inflammatory systematic complication which is a chronic disorder that severely affects bones and joints and results in the quality of life impairment. Methotrexate (MTX), an FDA-approved drug has maintained the standard of care for treating patients affected with RA. The mechanism of MTX includes the inhibition of purine and pyrimidine synthesis, suppression of polyamine accumulation, promotion of adenosine release, adhesion of the inflammatory molecules, and controlling of cytokine cascade in RA. The recommended dose for RA patients is 5-25 mg of MTX per week, depending on the severity of the disease but MTX has proven to be cytotoxic with side effects affecting various tissues when treating RA patients even with low doses over a prolonged period of time. The mechanism of such toxicity is not entirely understood. This review strives to understand it by correlating the different pathways, including MTX in folate metabolism, Sirt1/Nrf2/γ-gcs, and γ-gcs/CaSR-TNF-α/NF-kB signaling. In addition to this, the importance of targeted therapy combination with MTX on RA treatment and combinations approved from the clinical trials are also briefly discussed. Overall, this review elucidates the various MTX molecular mechanisms and toxicity at the molecular level, the limitations, and the scope for future directions.


Antirheumatic Agents/adverse effects , Arthritis, Rheumatoid/drug therapy , Methotrexate/adverse effects , Animals , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/pharmacology , Arthritis, Rheumatoid/physiopathology , Dose-Response Relationship, Drug , Humans , Methotrexate/administration & dosage , Methotrexate/pharmacology , Quality of Life , Severity of Illness Index
8.
Life Sci ; 280: 119629, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-34004253

Drug-induced organ toxicity/injury, especially in the liver, kidney, and gastrointestinal tract, is a systematic disorder that causes oxidative stress formation and inflammation resulting in cell death and organ failure. Current therapies target reactive oxygen species (ROS) scavenging and inhibit inflammatory factors in organ injury to restore the functions and temporary relief. Organ cell function and tissue homeostasis are maintained through gap junction intercellular communication, regulating connexin hemichannels. Mis-regulation of such connexin, especially connexin (Cx) 43, affects a comprehensive process, including cell differentiation, inflammation, and cell death. Aim to describe knowledge about the importance of connexin role and insights therapeutic targeting. Cx43 misregulation has been implicated in recent decades in various diseases. Moreover, in recent years there is increasing evidence that Cx43 is involved in the toxicity process, including hepatic, renal, and gastrointestinal disorders. Cx43 has the potential to initiate the immune system to cause cell death, which has been activated in the acceleration of apoptosis, necroptosis, and autophagy signaling pathway. So far, therapies targeting Cx43 have been under inspection and are subjected to clinical trial phases. This review elucidates the role of Cx43 in drug-induced vital organ injury, and recent reports compromise its function in the major signaling pathways.


Chemical and Drug Induced Liver Injury/etiology , Connexin 43/metabolism , Gastrointestinal Diseases/chemically induced , Kidney Diseases/chemically induced , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Connexin 43/analysis , Gap Junctions/drug effects , Gap Junctions/metabolism , Gap Junctions/pathology , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/pathology , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Signal Transduction/drug effects
...