Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Respir Care ; 50(3): 361-6, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15737246

RESUMEN

INTRODUCTION: Alterations in gas displacement in pediatric patients ventilated with the SensorMedics 3100A high-frequency oscillator are most commonly manipulated by adjusting the amplitude, frequency, and percent inspiratory time. The piston-position-and-displacement indicator is commonly centered and subsequently not adjusted. That practice may limit the clinician's ability to optimize carbon dioxide elimination. We hypothesized that varying the piston position would alter gas displacement and carbon dioxide elimination. METHODS: We conducted an observational study in a tertiary pediatric intensive care unit and a correlated bench study. In the clinical study, 24 patients were ventilated with a SensorMedics 3100A high-frequency oscillator. Transcutaneously measured carbon dioxide ((tCO(2))) values were documented with the piston-position-and-displacement indicator in left, center, and right positions. In the bench study the oscillator was set and maintained at: mean airway pressure 15 cm H(2)O, inspiratory time 33% of respiratory-cycle time, bias flow 20 L/min. A pneumotachometer attached to a respiratory mechanics monitor was placed between the ventilator circuit and a test lung. Data were collected with the piston-position-and-displacement indicator at the left, center, and right positions with frequencies of 4-14 Hz and amplitudes of 25-55 cm H(2)O. Data were collected over a 3-minute time period for each combination of frequency, amplitude, and piston-position-and-displacement-indicator position. We compared the data with repeated-measures analysis of variance. Pairwise comparisons were performed with a 2-tailed Student's test with Bonferroni correction. RESULTS: Among the 24 patients (tCO(2)) was significantly associated with the position of the piston (p < 0.007). In the bench study, gas displacement was higher when the piston-position-and-displacement indicator was positioned to the left (than when at the center position) 91.7% of the time (p < 0.0001). When the piston-position-and-displacement indicator was positioned to the right (as compared to the center position), gas displacement was lower 75% of the time (p < 0.0001). CONCLUSION: Adjusting the oscillator piston alters the volume of gas displaced and provides an additional means for titrating carbon dioxide elimination. .


Asunto(s)
Dióxido de Carbono/farmacocinética , Ventilación de Alta Frecuencia/instrumentación , Ventilación de Alta Frecuencia/métodos , Intercambio Gaseoso Pulmonar , Adolescente , Niño , Preescolar , Diseño de Equipo , Humanos , Lactante , Recién Nacido , Insuficiencia Respiratoria/terapia
2.
Crit Care Med ; 31(7): 2006-9, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12847396

RESUMEN

OBJECTIVE: To compare gas exchange with heliox and oxygen-enriched air during high-frequency oscillatory ventilation, while controlling for tidal volume, in a pediatric swine model of acute lung injury. We hypothesized that when tidal volume delivery is held constant, heliox does not alter gas exchange. DESIGN: Randomized, crossover trial. SETTING: University animal research laboratory. SUBJECTS: Ten swine (4.4-5.4 kg). INTERVENTIONS: Acute lung injury (A-a gradient of >300 mm Hg) was created using repeated saline lavage during conventional mechanical ventilation. The animals were then administered high-frequency oscillatory ventilation and ventilated with 60% oxygen/40% helium and 60% oxygen/40% nitrogen in a randomized, crossover trial. When changing gas mixtures within each animal, mean airway pressure (Paw = 16.8 +/- 0.3 cm H(2)O) and frequency (10 Hz) were held constant. Oscillation amplitude (DeltaP) was adjusted to maintain constant tidal volume delivery as measured by respiratory inductive plethysmography. Next, the animals were ventilated with 40% oxygen/60% helium and 40% oxygen/60% nitrogen in a randomized crossover trial, again controlling for tidal volume. MEASUREMENTS AND MAIN RESULTS: Gas exchange was assessed by arterial blood gas analysis after ventilation with each gas mixture. We demonstrated no significant difference in Paco(2) or Pao(2) between the heliox and oxygen-enriched air with either the 40% or 60% oxygen mixtures. The oscillation amplitude required to achieve the same tidal volume delivery was significantly less with heliox. CONCLUSIONS: We conclude that if tidal volume delivery is maintained constant, heliox does not alter gas exchange when compared with oxygen-enriched air. However, to achieve the same tidal volume delivery, a lower oscillation amplitude is required with heliox. The clinical benefit of heliox administration during high-frequency oscillatory ventilation has yet to be determined. Possible advantages of heliox include improved ventilation of larger patients when approaching the power limitations of the Sensormedics 3100A oscillator and a potential reduction in the oscillation amplitude delivered to the more proximal gas exchange units.


Asunto(s)
Helio/farmacología , Ventilación con Chorro de Alta Frecuencia , Oxígeno/farmacología , Intercambio Gaseoso Pulmonar/efectos de los fármacos , Volumen de Ventilación Pulmonar , Animales , Dióxido de Carbono/sangre , Relación Dosis-Respuesta a Droga , Oscilometría , Oxígeno/sangre , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA