Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(9): 096102, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36083653

RESUMEN

Disclinations in a 2D sheet create regions of Gaussian curvature whose inversion produces a reconfigurable surface with many distinct metastable shapes, as shown by molecular dynamics of a disclinated graphene monolayer. This material has a near-Gaussian "density of shapes" and an effectively antiferromagnetic interaction between adjacent cones. A∼10 nm patch has hundreds of distinct metastable shapes with tunable stability and topography on the size scale of biomolecules. As every conical disclination provides an Ising-like degree of freedom, we call this technique "Isigami."


Asunto(s)
Entropía , Distribución Normal
2.
Adv Mater ; 33(44): e2104265, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34480500

RESUMEN

Chemically stable quantum-confined 2D metals are of interest in next-generation nanoscale quantum devices. Bottom-up design and synthesis of such metals could enable the creation of materials with tailored, on-demand, electronic and optical properties for applications that utilize tunable plasmonic coupling, optical nonlinearity, epsilon-near-zero behavior, or wavelength-specific light trapping. In this work, it is demonstrated that the electronic, superconducting, and optical properties of air-stable 2D metals can be controllably tuned by the formation of alloys. Environmentally robust large-area 2D-Inx Ga1- x alloys are synthesized byConfinement Heteroepitaxy (CHet). Near-complete solid solubility is achieved with no evidence of phase segregation, and the composition is tunable over the full range of x by changing the relative elemental composition of the precursor. The optical and electronic properties directly correlate with alloy composition, wherein the dielectric function, band structure, superconductivity, and charge transfer from the metal to graphene are all controlled by the indium/gallium ratio in the 2D metal layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA