Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13290, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858412

RESUMEN

Thin ferromagnetic films possessing perpendicular magnetic anisotropy derived from the crystal lattice can deliver the requisite magnetocrystalline anisotropy density for thermally stable magnetic memory and logic devices at the single-digit-nm lateral size. Here, we demonstrate that an epitaxial synthetic antiferromagnet can be formed from L10 FePd, a candidate material with large magnetocrystalline anisotropy energy, through insertion of an ultrathin Ir spacer. Tuning of the Ir spacer thickness leads to synthetic antiferromagnetically coupled FePd layers, with an interlayer exchange field upwards of 0.6 T combined with a perpendicular magnetic anisotropy energy of 0.95 MJ/m3 and a low Gilbert damping of 0.01. Temperature-dependent ferromagnetic resonance measurements show that the Gilbert damping is mostly insensitive to temperature over a range of 20 K up to 300 K. In FePd|Ir|FePd trilayers with lower interlayer exchange coupling, optic and acoustic dynamic ferromagnetic resonance modes are explored as a function of temperature. The ability to engineer low damping and large interlayer exchange coupling in FePd|Ir|FePd synthetic antiferromagnets with high perpendicular magnetic anisotropy could prove useful for high performance spintronic devices.

2.
Rev Sci Instrum ; 91(2): 021301, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32113442

RESUMEN

A 300 keV transmission electron microscope was modified to produce broadband pulsed beams that can be, in principle, between 40 MHz and 12 GHz, corresponding to temporal resolution in the nanosecond to picosecond range without an excitation laser. The key enabling technology is a pair of phase-matched modulating and de-modulating traveling wave metallic comb striplines (pulsers). An initial temporal resolution of 30 ps was achieved with a strobe frequency of 6.0 GHz. The placement of the pulsers, mounted immediately below the gun, allows for preservation of all optical configurations, otherwise available to the unmodified instrument, and therefore makes such a post-modified instrument for dual-use, i.e., both pulsed-beam mode (i.e., stroboscopic time-resolved) and conventional continuous waveform mode. In this article, we describe the elements inserted into the beam path, challenges encountered during integration with an in-service microscope, and early results from an electric-field-driven pump-probe experiment. We conclude with ideas for making this class of instruments broadly applicable for examining cyclical and repeatable phenomena.

3.
ACS Nano ; 13(6): 6730-6741, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31184132

RESUMEN

Surface phonon polaritons (SPhPs), the surface-bound electromagnetic modes of a polar material resulting from the coupling of light with optic phonons, offer immense technological opportunities for nanophotonics in the infrared (IR) spectral region. However, once a particular material is chosen, the SPhP characteristics are fixed by the spectral positions of the optic phonon frequencies. Here, we provide a demonstration of how the frequency of these optic phonons can be altered by employing atomic-scale superlattices (SLs) of polar semiconductors using AlN/GaN SLs as an example. Using second harmonic generation (SHG) spectroscopy, we show that the optic phonon frequencies of the SLs exhibit a strong dependence on the layer thicknesses of the constituent materials. Furthermore, new vibrational modes emerge that are confined to the layers, while others are centered at the AlN/GaN interfaces. As the IR dielectric function is governed by the optic phonon behavior in polar materials, controlling the optic phonons provides a means to induce and potentially design a dielectric function distinct from the constituent materials and from the effective-medium approximation of the SL. We show that atomic-scale AlN/GaN SLs instead have multiple Reststrahlen bands featuring spectral regions that exhibit either normal or extreme hyperbolic dispersion with both positive and negative permittivities dispersing rapidly with frequency. Apart from the ability to engineer the SPhP properties, SL structures may also lead to multifunctional devices that combine the mechanical, electrical, thermal, or optoelectronic functionality of the constituent layers. We propose that this effort is another step toward realizing user-defined, actively tunable IR optics and sources.

4.
Artículo en Inglés | MEDLINE | ID: mdl-33281278

RESUMEN

Potential commercial applications for transition metal dichalcogenide (TMD) semiconductors such as MoS2 rely on unique material properties that are only accessible at monolayer to few-layer thickness regimes. Therefore, production methods that lend themselves to scalable and controllable formation of TMD films on surfaces are desirable for high volume manufacturing of devices based on these materials. We have developed a new thermal atomic layer deposition (ALD) process using bis(tert-butylimido)-bis(dimethylamido)molybdenum and 1-propanethiol to produce MoS2-containing amorphous films. We observe self-limiting reaction behavior with respect to both the Mo and S precursors at a substrate temperature of 350 °C. Film thickness scales linearly with precursor cycling, with growth per cycle values of ≈0.1 nm/cycle. As-deposited films are smooth and contain nitrogen and carbon impurities attributed to poor ligand elimination from the Mo source. Upon high-temperature annealing, a large portion of the impurities are removed, and we obtain few-layer crystalline 2H-MoS2 films.

5.
Chem Commun (Camb) ; 51(41): 8584-7, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25853927

RESUMEN

We demonstrate, in great detail, a completely waterless synthesis route to produce highly crystalline epitaxial thin films of TiO2-B and its more stable variant CaTi5O11, using pulsed laser deposition (PLD).

6.
Adv Mater ; 26(43): 7365-70, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25244308

RESUMEN

Using pulsed laser deposition, TiO2 (-) B and its recently discovered variant Ca:TiO2 (-) B (CaTi5O11) are synthesized as highly crystalline thin films for the first time by a completely water-free process. Significant enhancement in the Li-ion battery performance is achieved by manipulating the crystal orientation of the films, used as anodes, with a demonstration of extraordinary structural stability under extreme conditions.


Asunto(s)
Suministros de Energía Eléctrica , Iones/química , Litio/química , Titanio/química , Compuestos de Calcio/química , Electrodos , Diseño de Equipo , Rayos Láser , Microscopía Electrónica de Transmisión , Difracción de Rayos X
7.
J Colloid Interface Sci ; 418: 61-5, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24461818

RESUMEN

Monodispersed mesoporous silica spheres (MMSS) with different mesopore symmetries, such as hexagonal, cubic, or the mixture of hexagonal/cubic, are synthesized changing synthesis conditions. It seems that the direction of mesopores is retained through the particle in MMSS with cubic symmetry. In the case of hexagonal/cubic mixed symmetry, cubic structure is observed at the center of the particle, while hexagonal structure is observed near the surface. It is assumed that cubic structure forms at early stage of the particle growth and hexagonal symmetry forms at the later stage, leading to the formation of cubic core/hexagonal shell structure.

8.
J Chem Phys ; 138(14): 144705, 2013 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24981542

RESUMEN

The bonding and morphology of Pd clusters deposited on the LaO- and FeO2-terminated LaFeO3 (001) surface were studied using periodic density functional methods together with scanning transmission electron microscopy. We show that Pd tends to aggregate to three-dimensional (3D) clusters on both terminations since the Pd-Pd cohesive energy is larger than the Pd-LaFeO3 adhesive energy. However, from the kinetic point of view, Pd migration on the LaO termination is facile, while stronger interactions between Pd and the FeO2 termination significantly hinder the migration of Pd. Furthermore, molecular dynamics simulations demonstrate that Pd would agglomerate into 3D metallic and PdOx particles on the LaO and FeO2 terminations, respectively, and hint at the possibility of partial penetration of the PdOx particles into the surface, as observed experimentally.

9.
Microsc Microanal ; 18(4): 656-66, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22835379

RESUMEN

In prior research, specimen holders that employ a novel MEMS-based heating technology (Aduro™) provided by Protochips Inc. (Raleigh, NC, USA) have been shown to permit sub-Ångström imaging at elevated temperatures up to 1,000°C during in situ heating experiments in modern aberration-corrected electron microscopes. The Aduro heating devices permit precise control of temperature and have the unique feature of providing both heating and cooling rates of 106°C/s. In the present work, we describe the recent development of a new specimen holder that incorporates the Aduro heating device into a "closed-cell" configuration, designed to function within the narrow (2 mm) objective lens pole piece gap of an aberration-corrected JEOL 2200FS STEM/TEM, and capable of exposing specimens to gases at pressures up to 1 atm. We show the early results of tests of this specimen holder demonstrating imaging at elevated temperatures and at pressures up to a full atmosphere, while retaining the atomic resolution performance of the microscope in high-angle annular dark-field and bright-field imaging modes.

10.
J Am Chem Soc ; 133(45): 18090-3, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22007950

RESUMEN

Aberration-corrected transmission electron microscopy was used to study atomic-scale processes in Pd-LaFeO(3) catalysts. Clear evidence for diffusion of Pd into LaFeO(3) and out of LaFe(0.95)Pd(0.05)O(3-δ) under high-temperature oxidizing and reducing conditions, respectively, was found, but the extent to which these processes occurred was quite limited. These observations cast doubt that such phenomena play a significant role in a postulated mechanism of self-regeneration of this system as an automotive exhaust-gas catalyst.


Asunto(s)
Óxidos/química , Paladio/química , Catálisis , Microscopía Electrónica
11.
Phys Rev Lett ; 98(18): 185505, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17501586

RESUMEN

Molecular dynamics simulations of shear band development over 1000% strain in simple shear are used to test whether the local plastic strain rate is proportional to exp(-1/chi), where chi is a dimensionless quantity related to the disorder temperature or free volume that characterizes the structural state of the glass. Scaling is observed under the assumption that chi is linearly related to the local potential energy per atom. We calculate the potential energy per atom corresponding to absolute zero disorder temperature and the energy needed to create a shear transformation zone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA