Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Biochem Pharmacol ; 222: 116074, 2024 Apr.
Article En | MEDLINE | ID: mdl-38395265

Olanzapine, a widely prescribed atypical antipsychotic, poses a great risk to the patient's health by fabricating a plethora of severe metabolic and cardiovascular adverse effects eventually reducing life expectancy and patient compliance. Its heterogenous receptor binding profile has made it difficult to point out a specific cause or treatment for the related side effects. Growing body of evidence suggest that transient receptor potential (TRP) channel subfamily Ankyrin 1 (TRPA1) has pivotal role in pathogenesis of type 2 diabetes and obesity. With this background, we aimed to investigate the role of pharmacological manipulations of TRPA1 channels in antipsychotic (olanzapine)-induced metabolic alterations in female mice using allyl isothiocyanate (AITC) and HC-030031 (TRPA1 agonist and antagonist, respectively). It was found that after 6 weeks of treatment, AITC prevented olanzapine-induced alterations in body weight and adiposity; serum, and liver inflammatory markers; glucose and lipid metabolism; and hypothalamic appetite regulation, nutrient sensing, inflammatory and TRPA1 channel signaling regulating genes. Furthermore, several of these effects were absent in the presence of HC-030031 (TRPA1 antagonist) indicating protective role of TRPA1 agonism in attenuating olanzapine-induced metabolic alterations. Supplementary in-depth studies are required to study TRPA1 channel effect on other aspects of olanzapine-induced metabolic alterations.


Acetanilides , Antipsychotic Agents , Diabetes Mellitus, Type 2 , Purines , Transient Receptor Potential Channels , Mice , Humans , Female , Animals , TRPA1 Cation Channel , Olanzapine , Antipsychotic Agents/toxicity , Isothiocyanates/pharmacology , Obesity/chemically induced , Obesity/drug therapy , Liver/metabolism
...